Skip to main content

Drug Treatments for Alzheimer’s Disease: Hopes and Challenges

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 2816 Accesses

Abstract

At present, no effective cure is available to slow down or prevent progressive neuronal loss in the pathogenesis of Alzheimer’s disease (AD). All currently approved therapeutic agents provide symptomatic relief only. However, current agents under development exhibit potential protective effects on disease course. In this chapter, we consider currently marketed drugs for AD, including acetylcholinesterase inhibitors (AChEI) and antagonists of N-methyl-d-aspartate (NMDA) receptors. This work also discusses potential cognitive enhancers under clinical trial. We also review new therapies that are likely to slow down disease progression by mechanisms unrelated to amyloid or tau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aisen, P. S., Saumier, D., et al. (2006). A phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease. Neurology, 67(10), 1757–1763.

    CAS  PubMed  Google Scholar 

  • Aisen, P. S., Schneider, L. S., et al. (2008). High-dose B vitamin supplementation and cognitive decline in Alzheimer disease – a randomized controlled trial. JAMA : The Journal of the American Medical Association, 300(15), 1774–1783.

    CAS  Google Scholar 

  • Aisen, P. S., Gauthier, S., et al. (2011). Tramiprosate in mild-to-moderate Alzheimer’s disease - a randomized, double-blind, placebo-controlled, multi-centre study (the alphase study). Archives of Medical Science, 7(1), 102–111.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albani, D., Polito, L., et al. (2010). Sirtuins as novel targets for Alzheimer’s disease and other neurodegenerative disorders: Experimental and genetic evidence. Journal of Alzheimer’s Disease, 19(1), 11–26.

    PubMed  Google Scholar 

  • Allegri, R. F., & Guekht, A. (2012). Cerebrolysin improves symptoms and delays progression in patients with Alzheimer’s disease and vascular dementia. Drugs of Today, 48, 25–41.

    CAS  PubMed  Google Scholar 

  • Attems, J., Thal, D. R., et al. (2012). The relationship between subcortical tau pathology and Alzheimer’s disease. Biochemical Society Transactions, 40, 711–715.

    CAS  PubMed  Google Scholar 

  • Ballard, C., & Howard, R. (2006). Neuroleptic drugs in dementia: Benefits and harm. Nature Reviews Neuroscience, 7(6), 492–500.

    CAS  PubMed  Google Scholar 

  • Ballard, C., & Waite, J. (2006). The effectiveness of atypical antipsychotics for the treatment of aggression and psychosis in Alzheimer’s disease. Cochrane Database of Systematic Reviews, 1, CD003476.

    PubMed  Google Scholar 

  • Black, R. S., Sperling, R. A., et al. (2010). A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Disease and Associated Disorders, 24(2), 198–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blennow, K., Zetterberg, H., et al. (2012). Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Archives of Neurology, 69(8), 1002–1010.

    PubMed  Google Scholar 

  • Braidy, N., Jayasena, T., et al. (2012). Sirtuins in cognitive ageing and Alzheimer’s disease. Current Opinion in Psychiatry, 25(3), 226–230.

    PubMed  Google Scholar 

  • Carlson, C., Estergard, W., et al. (2011). Prevalence of asymptomatic vasogenic edema in pretreatment Alzheimer’s disease study cohorts from phase 3 trials of semagacestat and solanezumab. Alzheimer’s & Dementia, 7(4), 396–401.

    CAS  Google Scholar 

  • Chandrashekaran, I. R., Adda, C. G., et al. (2010). Inhibition by flavonoids of amyloid-like fibril formation by Plasmodium falciparum merozoite surface protein 2. Biochemistry, 49(28), 5899–5908.

    CAS  PubMed  Google Scholar 

  • Chang, W. P., Huang, X., et al. (2011). Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. The FASEB Journal, 25(2), 775–784.

    CAS  PubMed Central  Google Scholar 

  • Coleman, B. R., Ratcliffe, R. H., et al. (2008). [+]-Huperzine a treatment protects against N-methyl-D-aspartate-induced seizure/status epilepticus in rats. Chemico-Biological Interactions, 175(1–3), 387–395.

    CAS  PubMed  Google Scholar 

  • Cummings, J. L. (2003). Toward a molecular neuropsychiatry of neurodegenerative diseases. Annals of Neurology, 54(2), 147–154.

    CAS  PubMed  Google Scholar 

  • Daffner, K. R. (2010). Promoting successful cognitive aging: A comprehensive review. Journal of Alzheimers Disease, 19(4), 1101–1122.

    Google Scholar 

  • De Strooper, B., & Annaert, W. (2010). Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annual Review of Cell and Developmental Biology, 26(26), 235–260.

    PubMed  Google Scholar 

  • De Strooper, B., Vassar, R., et al. (2010). The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nature Reviews. Neurology, 6(2), 99–107.

    PubMed Central  PubMed  Google Scholar 

  • Donoviel, D. B., Hadjantonakis, A. K., et al. (1999). Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes & Development, 13(21), 2801–2810.

    CAS  Google Scholar 

  • Farlow, M., Amold, S. E., et al. (2012). Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimer’s & Dementia, 8(4), 261–271.

    CAS  Google Scholar 

  • Feldman, H. H., Doody, R. S., et al. (2010). Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology, 74(12), 956–964.

    CAS  PubMed  Google Scholar 

  • Feng, J., Huang, R., et al. (2010). A rapid review of economic evaluations of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease (Ad). Value in Health, 13(7), A560–A560.

    Google Scholar 

  • Ferris, S. H., Schmitt, F. A., et al. (2003). Long-term treatment with the NMDA antagonist, memantine: Results of a 24-week, open-label extension study in moderate to severe Alzheimer’s disease. International Psychogeriatrics, 15, 258–259.

    Google Scholar 

  • Fleisher, A. S., Raman, R., et al. (2008). Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Archives of Neurology, 65(8), 1031–1038.

    PubMed Central  PubMed  Google Scholar 

  • Fossey, J., Ballard, C., et al. (2006). Effect of enhanced psychosocial care on antipsychotic use in nursing home residents with severe dementia: Cluster randomised trial. British Medical Journal, 332(7544), 756–758A.

    PubMed Central  PubMed  Google Scholar 

  • Frankiewicz, T., & Parsons, C. G. (1999). Memantine restores long term potentiation impaired by tonic N-methyl-D-aspartate (NMDA) receptor activation following reduction of Mg2+ in hippocampal slices. Neuropharmacology, 38(9), 1253–1259.

    CAS  PubMed  Google Scholar 

  • Fukumoto, H., Takahashi, H., et al. (2010). A noncompetitive BACE1 inhibitor TAK-070 ameliorates Abeta pathology and behavioral deficits in a mouse model of Alzheimer’s disease. The Journal of Neuroscience, 30(33), 11157–11166.

    CAS  PubMed  Google Scholar 

  • Gao, X., Zheng, C. Y., et al. (2009). Huperzine a protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radical Biology & Medicine, 46(11), 1454–1462.

    CAS  Google Scholar 

  • Geleijnse, J. M., Giltay, E. J., et al. (2012). Effects of n-3 fatty acids on cognitive decline: A randomized, double-blind, placebo-controlled trial in stable myocardial infarction patients. Alzheimer’s & Dementia, 8(4), 278–287.

    CAS  Google Scholar 

  • Gotz, J., Ittner, L. M., et al. (2009). Common features between diabetes mellitus and Alzheimer’s disease. Cellular and Molecular Life Sciences, 66(8), 1321–1325.

    CAS  PubMed  Google Scholar 

  • Haag, M. D., Hofman, A., et al. (2009). Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam study. Journal of Neurology, Neurosurgery, and Psychiatry, 80(1), 13–17.

    CAS  PubMed  Google Scholar 

  • Hashimoto, T., Ogino, K., et al. (2010). Age-dependent increase in lysosome-associated membrane protein 1 and early-onset behavioral deficits in APPSL transgenic mouse model of Alzheimer’s disease. Neuroscience Letters, 469(2), 273–277.

    CAS  PubMed  Google Scholar 

  • Heiss, W. D., Brainin, M., et al. (2012). Cerebrolysin in patients with acute ischemic stroke in Asia results of a double-blind, placebo-controlled randomized trial. Stroke, 43(3), 630–636.

    CAS  PubMed  Google Scholar 

  • Herrmann, N., & Lanctot, K. L. (2007). Pharmacologic management of neuropsychiatric symptoms of Alzheimer disease. Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie, 52(10), 630–646.

    PubMed  Google Scholar 

  • Herrmann, N., Lanctot, K. L., et al. (2007). A placebo-controlled trial of valproate for agitation and aggression in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 23(2), 116–119.

    CAS  PubMed  Google Scholar 

  • Imbimbo, B. P., & Giardina, G. A. (2011). Gamma-secretase inhibitors and modulators for the treatment of Alzheimer’s disease: Disappointments and hopes. Current Topics in Medicinal Chemistry, 11(12), 1555–1570.

    CAS  PubMed  Google Scholar 

  • Imbimbo, B. P., Panza, F., et al. (2011). Therapeutic intervention for Alzheimer’s disease with gamma-secretase inhibitors: Still a viable option? Expert Opinion on Investigational Drugs, 20(3), 325–341.

    CAS  PubMed  Google Scholar 

  • Imbimbo, B. P., Ottonello, S., et al. (2012). Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease. Expert Review of Clinical Immunology, 8(2), 135–149.

    CAS  PubMed  Google Scholar 

  • Jack, C. R., Petersen, R. C., et al. (2008). Longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI. Neurobiology of Aging, 29(9), 1285–1295.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kales, H. C., Valenstein, M., et al. (2007). Mortality risk in patients with dementia treated with antipsychotics versus other psychiatric medications. The American Journal of Psychiatry, 164(10), 1568–1576.

    PubMed  Google Scholar 

  • Ke, Y. D., Delerue, F., et al. (2009). Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer’s disease. PloS One, 4(11), e7917.

    PubMed Central  PubMed  Google Scholar 

  • Kimura, M., Akasofu, S., et al. (2005). Protective effect of donepezil against Abeta (1–40) neurotoxicity in rat septal neurons. Brain Research, 1047(1), 72–84.

    CAS  PubMed  Google Scholar 

  • Kon, T., Mori, F., et al. (2012). Abnormal tau deposition in neurons, but not in glial cells in the cerebral tissue surrounding arteriovenous malformation. Neuropathology, 32(3), 267–271.

    PubMed  Google Scholar 

  • Krishnan, K. R. R., Charles, H. C., et al. (2003). Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. The American Journal of Psychiatry, 160(11), 2003–2011.

    PubMed  Google Scholar 

  • Lachno, D. R., Romeo, M. J., et al. (2011). Validation of ELISA methods for quantification of total Tau and phosporylated-Tau(181) in human cerebrospinal fluid with measurement in specimens from Two Alzheimer’s disease studies. Journal of Alzheimer’s Disease, 26(3), 531–541.

    CAS  PubMed  Google Scholar 

  • Ladiwala, A. R. A., Lin, J. C., et al. (2010). Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers. The Journal of Biological Chemistry, 285(31), 24228–24237.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lasagna-Reeves, C. A., Castillo-Carranza, D. L., et al. (2012). Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. The FASEB Journal, 26(5), 1946–1959.

    CAS  Google Scholar 

  • Lee, M., Bard, F., et al. (2005). Abeta42 Immunization in Alzheimer’s disease generates Abeta N-terminal antibodies. Annals of Neurology, 58(3), 430–435.

    CAS  PubMed  Google Scholar 

  • Li, Y., Duffy, K. B., et al. (2010). GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. Journal of Alzheimers Disease, 19(4), 1205–1219.

    Google Scholar 

  • Lopez, O. L., Baker, J. T., et al. (2009). Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease (vol 80, pg 600, 2009). Journal of Neurology, Neurosurgery, and Psychiatry, 80(9), 1056–1056.

    Google Scholar 

  • Ma, X. Q., Tan, C. H., et al. (2007). Huperzine a from Huperzia species - an ethnopharmacological review. Journal of Ethnopharmacology, 113(1), 15–34.

    CAS  PubMed  Google Scholar 

  • Marks, N., & Berg, M. J. (2010). BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochemical Research, 35(2), 181–210.

    CAS  PubMed  Google Scholar 

  • Martinez-Coria, H., Green, K. N., et al. (2010). Memantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. The American Journal of Pathology, 176(2), 870–880.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masliah, E., & Diez-Tejedor, E. (2012). The pharmacology of neurotrophic treatment with cerebrolysin: Brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs of Today, 48, 3–24.

    CAS  PubMed  Google Scholar 

  • Massudi, H., Grant, R., et al. (2012). NAD(+) metabolism and oxidative stress: The golden nucleotide on a crown of thorns. Redox Report, 17(1), 28–46.

    CAS  PubMed  Google Scholar 

  • McGuinness, B., O’Hare, J., et al. (2010). Statins for the treatment of dementia. Cochrane Database of Systematic Reviews, 8, CD007514.

    PubMed  Google Scholar 

  • McKee, A. C., Carreras, I., et al. (2008). Ibuprofen reduces Abeta, hyperphosphorylated tau and memory deficits in Alzheimer mice. Brain Research, 1207, 225–236.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLaurin, J., Cecal, R., et al. (2002). Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nature Medicine, 8(11), 1263–1269.

    CAS  PubMed  Google Scholar 

  • Menon, P. K., Muresanu, D. F., et al. (2012). Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals. CNS & Neurological Disorders Drug Targets, 11(1), 40–49.

    CAS  Google Scholar 

  • Moebius, H. J., Galasko, D., et al. (2003a). Functional improvement from treatment with the NMDA antagonist memantine: Results of a 28-week, randomized, placebo-controlled study in advanced Alzheimer’s disease. European Neuropsychopharmacology, 13, S388–S388.

    Google Scholar 

  • Moebius, H. J., Reisberg, B., et al. (2003b). Long-term efficacy and safety benefits from treatment with the NMDA antagonist memantine: results of a 24-week, open-label extension study in moderate to severe Alzheimer’s disease. European Neuropsychopharmacology, 13, S388–S389.

    Google Scholar 

  • Morris, M. C. (2012). Symposium 1: Vitamins and cognitive development and performance nutritional determinants of cognitive aging and dementia. The Proceedings of the Nutrition Society, 71(1), 1–13.

    CAS  PubMed  Google Scholar 

  • Naik, R. S., Hartmann, J., et al. (2009). Effects of rivastigmine and donepezil on brain acetylcholine levels in acetylcholinesterase-deficient mice. Journal of Pharmacy and Pharmaceutical Sciences, 12(1), 79–85.

    CAS  PubMed  Google Scholar 

  • Neugroschl, J., & Sano, M. (2010). Current treatment and recent clinical research in Alzheimer’s disease. The Mount Sinai Journal of Medicine, 77(1), 3–16.

    Google Scholar 

  • Nord, L. C., Sundqvist, J., et al. (2010). Analysis of oestrogen regulation of alpha-, beta- and gamma-secretase gene and protein expression in cultured human neuronal and glial cells. Neurodegenerative Diseases, 7(6), 349–364.

    PubMed  Google Scholar 

  • Okamura, N., Funaki, Y., et al. (2008). In vivo visualization of donepezil binding in the brain of patients with Alzheimer’s disease. British Journal of Clinical Pharmacology, 65(4), 472–479.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olazaran, J., Reisberg, B., et al. (2010). Nonpharmacological therapies in Alzheimer’s disease: A systematic review of efficacy. Dementia and Geriatric Cognitive Disorders, 30(2), 161–178.

    PubMed  Google Scholar 

  • Orgogozo, J. M., Gilman, S., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61(1), 46–54.

    CAS  PubMed  Google Scholar 

  • Panza, F., Frisardi, V., et al. (2012). Immunotherapy for Alzheimer’s disease: From anti-beta-amyloid to tau-based immunization strategies. Immunotherapy, 4(2), 213–238.

    CAS  PubMed  Google Scholar 

  • Pepeu, G., & Giovannini, M. G. (2009). Cholinesterase inhibitors and beyond. Current Alzheimer Research, 6(2), 86–96.

    CAS  PubMed  Google Scholar 

  • Perdomo, C., Wilcock, G. K., et al. (2003). Donepezil: A meta-analysis of individual patient data from randomized controlled trials in the treatment of patients with mild to moderate Alzheimer’s disease. Journal of General Internal Medicine, 18, 197–197.

    Google Scholar 

  • Perry, T., Lahiri, D. K., et al. (2003). Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. Journal of Neuroscience Research, 72(5), 603–612.

    CAS  PubMed  Google Scholar 

  • Petersen, R. C., Smith, G. E., et al. (1999). Mild cognitive impairment - clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.

    CAS  PubMed  Google Scholar 

  • Petersen, R. C., Thal, L. J., et al. (2005). Donepezil and vitamin E in mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), S14–S14.

    Google Scholar 

  • Pettersson, M., Kauffman, G. W., et al. (2011). Novel gamma-secretase modulators: A review of patents from 2008 to 2010. Expert Opinion on Therapeutic Patents, 21(2), 205–226.

    CAS  PubMed  Google Scholar 

  • Pohanka, M. (2011). Alzheimer’s disease and related neurodegenerative disorders: Implication and counteracting of melatonin. Journal of Applied Biomedicine, 9(4), 185–196.

    CAS  Google Scholar 

  • Porter, V. R., Buxton, W. G., et al. (2003). Frequency and characteristics of anxiety among patients with Alzheimer’s disease and related dementias. The Journal of Neuropsychiatry and Clinical Neurosciences, 15(2), 180–186.

    PubMed  Google Scholar 

  • Prodouz, S. (2012). LILLY (ELI) & COMPANY - LLY’s Results of Phase 3 Solanezumab EXPEDITION Studies.

    Google Scholar 

  • Quinn, J. F., Raman, R., et al. (2010). Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease a randomized trial. JAMA : The Journal of the American Medical Association, 304(17), 1903–1911.

    CAS  Google Scholar 

  • Ramesh, B. N., Rao, T. S. S., et al. (2010). Neuronutrition and Alzheimer’s disease. Journal of Alzheimer’s Disease, 19(4), 1123–1139.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reichert, J. M. (2011). Antibody-based therapeutics to watch in 2011. MAbs, 3(1), 76–99.

    PubMed Central  PubMed  Google Scholar 

  • Reisberg, B., Doody, R., et al. (2003). Memantine in moderate-to-severe Alzheimer’s disease. The New England Journal of Medicine, 348(14), 1333–1341.

    CAS  PubMed  Google Scholar 

  • Rocher-Ros, V., Marco, S., et al. (2010). Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7. Oncogene, 29(20), 2950–2961.

    CAS  PubMed  Google Scholar 

  • Rosales-Corral, S. A., Acuna-Castroviejo, D., et al. (2012). Alzheimer’s disease: Pathological mechanisms and the beneficial role of melatonin. Journal of Pineal Research, 52(2), 167–202.

    CAS  PubMed  Google Scholar 

  • Rosenberg, P. B., Drye, L. T., et al. (2010). Sertraline for the treatment of depression in Alzheimer disease. The American Journal of Geriatric Psychiatry, 18(2), 136–145.

    PubMed Central  PubMed  Google Scholar 

  • Samadi, H., & Sultzer, D. (2011). Solanezumab for Alzheimer’s disease. Expert Opinion on Biological Therapy, 11(6), 787–798.

    CAS  PubMed  Google Scholar 

  • Samson, K. (2010). NerveCenter: Phase III Alzheimer trial halted: Search for therapeutic biomarkers continues. Annals of Neurology, 68(4), A9–A12.

    PubMed  Google Scholar 

  • Sano, M., Ernesto, C., et al. (1997). A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The New England Journal of Medicine, 336(17), 1216–1222.

    CAS  PubMed  Google Scholar 

  • Schneider, L. S., & Sano, M. (2009). Current Alzheimer’s disease clinical trials: Methods and placebo outcomes. Alzheimer’s & Dementia, 5(5), 388–397.

    Google Scholar 

  • Schneider, B. M., Dodman, N. H., et al. (2009). Use of memantine in treatment of canine compulsive disorders. Journal of Veterinary Behavior-Clinical Applications and Research, 4(3), 118–126.

    Google Scholar 

  • Serby, M. J., Burns, S. J., et al. (2011). Treatment of memory loss with herbal remedies. Current Treatment Options in Neurology, 13(5), 520–528.

    PubMed  Google Scholar 

  • Sharma, A., Muresanu, D. F., et al. (2012a). Superior neuroprotective effects of cerebrolysin in nanoparticle-induced exacerbation of hyperthermia-induced brain pathology. CNS & Neurological Disorders Drug Targets, 11(1), 7–25.

    CAS  Google Scholar 

  • Sharma, H. S., Sharma, A., et al. (2012b). Neuroprotective effects of cerebrolysin, a combination of different active fragments of neurotrophic factors and peptides on the whole body hyperthermia-induced neurotoxicity: Modulatory roles of Co-morbidity factors and nanoparticle intoxication. New Perspectives of Central Nervous System Injury and Neuroprotection, 102, 249–276.

    CAS  Google Scholar 

  • Shen, C. Y., Chen, Y. F., et al. (2008). Hydrogen peroxide promotes Abeta production through JNK-dependent activation of gamma-secretase. The Journal of Biological Chemistry, 283(25), 17721–17730.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siemers, E. R., Friedrich, S., et al. (2010). Safety and changes in plasma and cerebrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease. Clinical Neuropharmacology, 33(2), 67–73.

    CAS  PubMed  Google Scholar 

  • Smith, P. J., Blumenthal, J. A., et al. (2010). Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension, 55(6), 1331–U1385.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steen, E., Terry, B. M., et al. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? Journal of Alzheimer’s Disease, 7(1), 63–80.

    CAS  PubMed  Google Scholar 

  • Stough, C., Downey, L., et al. (2012). The effects of 90-day supplementation with the Omega-3 essential fatty acid docosahexaenoic acid (DHA) on cognitive function and visual acuity in a healthy aging population. Neurobiology of Aging, 33(4), 824.e1–824.e3.

    CAS  Google Scholar 

  • Sun, A. Y., Wang, Q., et al. (2010). Resveratrol as a therapeutic agent for neurodegenerative diseases. Molecular Neurobiology, 41(2–3), 375–383.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabaton, M., Zhu, X. W., et al. (2010). Signaling effect of amyloid-beta(42) on the processing Abeta PP. Experimental Neurology, 221(1), 18–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi, H., Fukumoto, H., et al. (2010). Ameliorative effects of a non-competitive BACE1 inhibitor TAK-070 on Abeta peptide levels and impaired learning behavior in aged rats. Brain Research, 1361, 146–156.

    CAS  PubMed  Google Scholar 

  • Tamboli, I. Y., Barth, E., et al. (2010). Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. The Journal of Biological Chemistry, 285(48), 37405–37414.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang, J., & Ghosh, A. (2011). Treating transgenic Alzheimer mice with a beta-secretase inhibitor, what have we learned? Aging-Us, 3(1), 14–16.

    CAS  Google Scholar 

  • Tariot, P. N., Erb, R., et al. (1998). Efficacy and tolerability of carbamazepine for agitation and aggression in dementia. The American Journal of Psychiatry, 155(1), 54–61.

    CAS  PubMed  Google Scholar 

  • Thome, J., & Doppler, E. (2012). Safety profile of cerebrolysin: Clinical experience from dementia and stroke trials. Drugs of Today, 48, 63–69.

    CAS  PubMed  Google Scholar 

  • Uenaka, K., Nakano, M., et al. (2012). Comparison of pharmacokinetics, pharmacodynamics, safety, and tolerability of the amyloid beta monoclonal antibody solanezumab in Japanese and white patients with mild to moderate Alzheimer disease. Clinical Neuropharmacology, 35(1), 25–29.

    CAS  PubMed  Google Scholar 

  • Uluoglu, C., & Guney, H. Z. (2010). Drug research in the elderly people with dementia. Turkish Journal of Geriatrics-Turk Geriatri Dergisi, 13, 61–69.

    Google Scholar 

  • Vazquez-Roque, R. A., Ramos, B., et al. (2012). Chronic administration of the neurotrophic agent cerebrolysin ameliorates the behavioral and morphological changes induced by neonatal ventral hippocampus lesion in a rat model of schizophrenia. Journal of Neuroscience Research, 90(1), 288–306.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vlad, S. C., Miller, D. R., et al. (2008). Protective effects of NSAIDs on the development of Alzheimer disease. Neurology, 70(19), 1672–1677.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walesiuk, A., & Braszko, J. J. (2010). Gingkoselect alleviates chronic corticosterone-induced spatial memory deficits in rats. Fitoterapia, 81(1), 25–29.

    CAS  PubMed  Google Scholar 

  • Wang, J., Fivecoat, H., et al. (2010). The role of Sirt1: At the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1804(8), 1690–1694.

    CAS  Google Scholar 

  • Wei, Y., Miao, J. Y., et al. (2012). Endogenous and exogenous factors in hyperphosphorylation of Tau in Alzheimer’s disease. Progress in Biochemistry and Biophysics, 39(8), 778–784.

    CAS  Google Scholar 

  • Weintraub, D., Rosenberg, P. B., et al. (2010). Sertraline for the treatment of depression in Alzheimer disease: Week-24 outcomes. The American Journal of Geriatric Psychiatry, 18(4), 332–340.

    PubMed Central  PubMed  Google Scholar 

  • Wilkinson, B. L., Cramer, P. E., et al. (2012). Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer’s disease. Neurobiology of Aging, 33(1), 197 e121–132.

    Google Scholar 

  • Winblad, B., Poritis, N. (1999). Memantine in severe dementia: results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry, 14, 135–146.

    Google Scholar 

  • Winblad, B., Andreasen, N., et al. (2012). Safety, tolerability, and antibody response of active Abeta immunotherapy with CAD106 in patients with Alzheimer’s disease: Randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurology, 11(7), 597–604.

    CAS  PubMed  Google Scholar 

  • Xiao, S. F., Xue, H. B., et al. (2012). Therapeutic effects of cerebrolysin added to risperidone in patients with schizophrenia dominated by negative symptoms. The Australian and New Zealand Journal of Psychiatry, 46(2), 153–160.

    PubMed  Google Scholar 

  • Zhou, J. W., Cheng, X. R., et al. (2012). The activity and mRNA expression of beta-secretase, cathepsin D, and cathepsin B in the brain of senescence-accelerated mouse. Journal of Alzheimer’s Disease, 28(2), 471–480.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NHMRC Capacity Building Grant to Prof. Perminder Sachdev. Nady Braidy is the recipient of an Alzheimer’s Australia Viertel Foundation Postdoctoral Research Fellowship at the University of New South Wales. We sincerely thank the Rebecca L. Cooper Medical Research Foundation for ongoing financial support of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nady Braidy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Braidy, N., Poljak, A., Jayasena, T., Sachdev, P. (2014). Drug Treatments for Alzheimer’s Disease: Hopes and Challenges. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_141

Download citation

Publish with us

Policies and ethics