Skip to main content

Concept of Excitotoxicity via Glutamate Receptors

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Since its inception, the concept of glutamate excitotoxicity has provided a foundational framework for understanding the role played by excitatory amino acids in disease states of the brain. At the same time, it has served as a guiding principle in the development and evaluation of new anti-excitotoxic drugs, many of which show promise as neuroprotective therapies in a number of neurological conditions. The discovery that glutamate receptors on the cell surface can engage, through second messengers such as calcium (Ca2+), nitric oxide (NO), and inositol phospholipids, downstream intracellular signaling cascades involved in cell death helped uncover the complexity of the excitotoxic cascade. The identification of numerous intracellular effectors of excitotoxicity has provided a physiological and pharmacological basis for understanding the cellular and molecular mechanisms behind glutamate-mediated nerve cell injury and its role in neuropsychiatric diseases. More recently, knowledge of the molecular biology of glutamate receptors has allowed, for the first time, the identification of differences in the pattern of expression of glutamate receptors in human populations afflicted by neuropsychiatric diseases. This knowledge will be useful in uncovering genes that may confer individual susceptibility to excitotoxic damage and, as a result, predisposition to the development of certain mental and neurological diseases. In this chapter, the role of glutamate receptor overactivation in excitotoxic cell injury as well as potential neuroprotective therapies for limiting glutamate-mediated neurotoxicity in disease states of the central nervous system will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid)

ATP:

Adenosine-5ā€²-triphosphate

BAD:

Bcl-2-associated death promoter

BAX:

Bcl-2-associated X protein

Bcl-2:

B-cell lymphoma 2 protein

Bcl-XL :

B-cell lymphoma ā€“ extra large protein

Ca2+ :

Calcium

DA:

Domoic acid

DCD:

Delayed calcium deregulation

DNA:

Deoxyribonucleic acid

EAAs:

Excitatory amino acids

ER:

Endoplasmic reticulum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Glu:

L-glutamate

GluRs:

Glutamate receptors

KA:

Kainic acid

MCU:

Mitochondrial calcium uniporter

mNCX:

Mitochondrial Na+/Ca2+ transporter

mPTP:

Mitochondrial permeability transition pore

NCX:

Na+/Ca2+ exchanger

NMDA:

N-methyl-d-aspartic acid

NO:

Nitric oxide

PMCA:

Plasma membrane Ca2+ ATPase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SIAH1:

Seven in absentia homolog E3 ubiquitin-protein ligase

VDAC:

Voltage-dependent anion-selective channel

Ī”Ļˆm:

Inner mitochondrial membrane potential

References

  • Abramov, A. Y., & Duchen, M. R. (2008). Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochimica et Biophysica Acta, 1777, 953ā€“964.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Alexander, S. P., Mathie, A., & Peters, J. A. (2011). Guide to Receptors and Channels (GRAC), 5th edition. British Journal of Pharmacology, 164(Suppl 1), S1ā€“S324.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., & Nicotera, P. (1995). Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 15, 961ā€“973.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Arundine, M., & Tymianski, M. (2004). Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cellular and Molecular Life Sciences, 61, 657ā€“668.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bano, D., Young, K. W., Guerin, C. J., Lefeuvre, R., Rothwell, N. J., Naldini, L., Rizzuto, R., Carafoli, E., & Nicotera, P. (2005). Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell, 120, 275ā€“285.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Beal, M. F. (1998). Excitotoxicity and nitric oxide in Parkinsonā€™s disease pathogenesis. Annals of Neurology, 44, S110ā€“S114.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bensimon, G., Lacomblez, L., & Meininger, V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. The New England Journal of Medicine, 330, 585ā€“591.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Benveniste, H., Drejer, J., Schousboe, A., & Diemer, N. H. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. Journal of Neurochemistry, 43, 1369ā€“1374.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bernardi, P. (1999). Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiological Reviews, 79, 1127ā€“1155.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bernardi, P., & Von Stockum, S. (2012). The permeability transition pore as a Ca2+ release channel: New answers to an old question. Cell Calcium, 52, 22ā€“27.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Besancon, E., Guo, S., Lok, J., Tymianski, M., & Lo, E. H. (2008). Beyond NMDA and AMPA glutamate receptors: Emerging mechanisms for ionic imbalance and cell death in stroke. Trends in Pharmacological Sciences, 29, 268ā€“275.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31ā€“39.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., & Lipton, S. A. (1995). Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proceedings of the National Academy of Sciences of the United States of America, 92, 7162ā€“7166.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Boulter, J., Hollmann, M., Oā€™shea-Greenfield, A., Hartley, M., Deneris, E., Maron, C., & Heinemann, S. (1990). Molecular cloning and functional expression of glutamate receptor subunit genes. Science, 249, 1033ā€“1037.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brorson, J. R., Manzolillo, P. A., & Miller, R. J. (1994). Ca2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells. The Journal of Neuroscience, 14, 187ā€“197.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brorson, J. R., Marcuccilli, C. J., & Miller, R. J. (1995). Delayed antagonism of calpain reduces excitotoxicity in cultured neurons. Stroke, 26, 1259ā€“1266.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brouns, R., & De Deyn, P. P. (2009). The complexity of neurobiological processes in acute ischemic stroke. Clinical Neurology and Neurosurgery, 111, 483ā€“495.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Brown, G. C. (2010). Nitric oxide and neuronal death. Nitric Oxide, 23, 153ā€“165.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Buckingham, S. C., Campbell, S. L., Haas, B. R., Montana, V., Robel, S., Ogunrinu, T., & Sontheimer, H. (2011). Glutamate release by primary brain tumors induces epileptic activity. Nature Medicine, 17, 1269ā€“1274.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Budd, S. L., & Nicholls, D. G. (1996). Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. Journal of Neurochemistry, 67, 2282ā€“2291.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Budd, S. L., Tenneti, L., Lishnak, T., & Lipton, S. A. (2000). Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 6161ā€“6166.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Bullock, R., Zauner, A., Woodward, J., & Young, H. F. (1995). Massive persistent release of excitatory amino acids following human occlusive stroke. Stroke, 26, 2187ā€“2189.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cao, G., Xing, J., Xiao, X., Liou, A. K., Gao, Y., Yin, X. M., Clark, R. S., Graham, S. H., & Chen, J. (2007). Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. The Journal of Neuroscience, 27, 9278ā€“9293.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen, H. S., & Lipton, S. A. (2006). The chemical biology of clinically tolerated NMDA receptor antagonists. Journal of Neurochemistry, 97, 1611ā€“1626.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen, H. S., Pellegrini, J. W., Aggarwal, S. K., Lei, S. Z., Warach, S., Jensen, F. E., & Lipton, S. A. (1992). Open-channel block of N-methyl-d-aspartate (NMDA) responses by memantine: Therapeutic advantage against NMDA receptor-mediated neurotoxicity. The Journal of Neuroscience, 12, 4427ā€“4436.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Chinopoulos, C., & Adam-Vizi, V. (2006). Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. The FEBS Journal, 273, 433ā€“450.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cho, D. H., Nakamura, T., & Lipton, S. A. (2010). Mitochondrial dynamics in cell death and neurodegeneration. Cellular and Molecular Life Sciences, 67, 3435ā€“3447.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Choi, D. W. (1985). Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neuroscience Letters, 58, 293ā€“297.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Choi, D. W. (1987). Ionic dependence of glutamate neurotoxicity. The Journal of Neuroscience, 7, 369ā€“379.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1, 623ā€“634.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Choi, D. W. (1990). Ketamine reduces NMDA receptor mediated neurotoxicity in cortical cultures. In E. F. Domino (Ed.), Status of ketamine in anesthesiology (pp. 549ā€“555). Ann Arbor, MI: NPP Books.

    Google ScholarĀ 

  • Choi, D. W., Viseskul, V., Amirthanayagam, M., & Monyer, H. (1989). Aspartate neurotoxicity on cultured cortical neurons. Journal of Neuroscience Research, 23, 116ā€“121.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cook, D. J., Teves, L., & Tymianski, M. (2012a). Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature, 483, 213ā€“217.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cook, D. J., Teves, L., & Tymianski, M. (2012b). A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Science Translational Medicine, 4, 154ra133.

    Google ScholarĀ 

  • Cooke, S. F., & Bliss, T. V. (2006). Plasticity in the human central nervous system. Brain, 129, 1659ā€“1673.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Curtis, D. R., Phillis, J. W., & Watkins, J. C. (1959). Chemical excitation of spinal neurones. Nature, 183, 611ā€“612.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Curtis, D. R., Phillis, J. W., & Watkins, J. C. (1960). The chemical excitation of spinal neurones by certain acidic amino acids. The Journal of Physiology, 150, 656ā€“682.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Dā€™orsi, B., Bonner, H., Tuffy, L. P., Dussmann, H., Woods, I., Courtney, M. J., Ward, M. W., & Prehn, J. H. (2012). Calpains are downstream effectors of bax-dependent excitotoxic apoptosis. The Journal of Neuroscience, 32, 1847ā€“1858.

    PubMedĀ  Google ScholarĀ 

  • David, G., Talbot, J., & Barrett, E. F. (2003). Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals. Cell Calcium, 33, 197ā€“206.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., & Snyder, S. H. (1991). Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proceedings of the National Academy of Sciences of the United States of America, 88, 6368ā€“6371.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Dawson, V. L., Kizushi, V. M., Huang, P. L., Snyder, S. H., & Dawson, T. M. (1996). Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. The Journal of Neuroscience, 16, 2479ā€“2487.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Doyle, K. P., Simon, R. P., & Stenzel-Poore, M. P. (2008). Mechanisms of ischemic brain damage. Neuropharmacology, 55, 310ā€“318.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Duchen, M. R. (2000a). Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium, 28, 339ā€“348.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Duchen, M. R. (2000b). Mitochondria and calcium: From cell signalling to cell death. The Journal of Physiology, 529(Pt 1), 57ā€“68.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Duchen, M. R. (2012). Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Archiv: European Journal of Physiology, 464, 111ā€“121.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P., & Choi, D. W. (1995). Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. The Journal of Neuroscience, 15, 6377ā€“6388.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Dumuis, A., Sebben, M., Haynes, L., Pin, J. P., & Bockaert, J. (1988). NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature, 336, 68ā€“70.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Dykens, J. A. (1994). Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. Journal of Neurochemistry, 63, 584ā€“591.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Dykens, J. A., Stern, A., & Trenkner, E. (1987). Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. Journal of Neurochemistry, 49, 1222ā€“1228.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Farooqui, A. A., Ong, W. Y., & Horrocks, L. A. (2008). Neurochemical aspects of excitotoxicity. New York, NY: Springer.

    Google ScholarĀ 

  • Fleischhacker, W. W., Buchgeher, A., & Schubert, H. (1986). Memantine in the treatment of senile dementia of the Alzheimer type. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 10, 87ā€“93.

    CASĀ  Google ScholarĀ 

  • Fumagalli, E., Funicello, M., Rauen, T., Gobbi, M., & Mennini, T. (2008). Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. European Journal of Pharmacology, 578, 171ā€“176.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Garthwaite, J., Charles, S. L., & Chess-Williams, R. (1988). Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 336, 385ā€“388.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Gereau, R. W., & Swanson, G. (2008). The glutamate receptors. Totowa, NJ: Humana Press.

    Google ScholarĀ 

  • Gillessen, T., Budd, S. L., & Lipton, S. A. (2002). Excitatory amino acid neurotoxicity. Advances in Experimental Medicine and Biology, 513, 3ā€“40.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Greenamyre, J. T. (1986). The role of glutamate in neurotransmission and in neurologic disease. Archives of Neurology, 43, 1058ā€“1063.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Gunter, K. K., Zuscik, M. J., & Gunter, T. E. (1991). The Na+(-independent Ca2+ efflux mechanism of liver mitochondria is not a passive Ca2+/2H+ exchanger. The Journal of Biological Chemistry, 266, 21640ā€“21648.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I., & Hamberger, A. (1985). Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. Journal of Cerebral Blood Flow and Metabolism, 5, 413ā€“419.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hara, M. R., & Snyder, S. H. (2007). Cell signaling and neuronal death. Annual Review of Pharmacology and Toxicology, 47, 117ā€“141.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Hayward, S. D., Snyder, S. H., & Sawa, A. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nature Cell Biology, 7, 665ā€“674.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hayashi, T. (1952). A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. The Japanese Journal of Physiology, 3, 46ā€“64.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hayashi, T. (1954). Effects of sodium glutamate on the nervous system. The Keio Journal of Medicine, 3, 183ā€“192.

    Google ScholarĀ 

  • Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31ā€“108.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hollmann, M., Oā€™shea-Greenfield, A., Rogers, S. W., & Heinemann, S. (1989). Cloning by functional expression of a member of the glutamate receptor family. Nature, 342, 643ā€“648.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hu, N. W., Ondrejcak, T., & Rowan, M. J. (2012). Glutamate receptors in preclinical research on Alzheimerā€™s disease: Update on recent advances. Pharmacology, Biochemistry, and Behavior, 100, 855ā€“862.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ichas, F., Jouaville, L. S., & Mazat, J. P. (1997). Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell, 89, 1145ā€“1153.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Jeffery, B., Barlow, T., Moizer, K., Paul, S., & Boyle, C. (2004). Amnesic shellfish poison. Food and Chemical Toxicology, 42, 545ā€“557.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Jensen, F. E. (2005). Role of glutamate receptors in periventricular leukomalacia. Journal of Child Neurology, 20, 950ā€“959.

    PubMedĀ  Google ScholarĀ 

  • Kaul, M., Garden, G. A., & Lipton, S. A. (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature, 410, 988ā€“994.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T. A., Sakmann, B., & Seeburg, P. H. (1990). A family of AMPA-selective glutamate receptors. Science, 249, 556ā€“560.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim, M. J., Jo, D. G., Hong, G. S., Kim, B. J., Lai, M., Cho, D. H., Kim, K. W., Bandyopadhyay, A., Hong, Y. M., Kim, D. H., Cho, C., Liu, J. O., Snyder, S. H., & Jung, Y. K. (2002). Calpain-dependent cleavage of cain/cabin1 activates calcineurin to mediate calcium-triggered cell death. Proceedings of the National Academy of Sciences of the United States of America, 99, 9870ā€“9875.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Kirichok, Y., Krapivinsky, G., & Clapham, D. E. (2004). The mitochondrial calcium uniporter is a highly selective ion channel. Nature, 427, 360ā€“364.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Koumura, A., Nonaka, Y., Hyakkoku, K., Oka, T., Shimazawa, M., Hozumi, I., Inuzuka, T., & Hara, H. (2008). A novel calpain inhibitor, ((1S)-1((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience, 157, 309ā€“318.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kroemer, G., Galluzzi, L., & Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiological Reviews, 87, 99ā€“163.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kumar, J., & Mayer, M. L. (2012). Functional insights from glutamate receptor ion channel structures. Annual Review of Physiology, 75, 313ā€“337.

    PubMedĀ  Google ScholarĀ 

  • Kupina, N. C., Nath, R., Bernath, E. E., Inoue, J., Mitsuyoshi, A., Yuen, P. W., Wang, K. K., & Hall, E. D. (2001). The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. Journal of Neurotrauma, 18, 1229ā€“1240.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lacomblez, L., Bensimon, G., Leigh, P. N., Guillet, P., & Meininger, V. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet, 347, 1425ā€“1431.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lafon-Cazal, M., Pietri, S., Culcasi, M., & Bockaert, J. (1993). NMDA-dependent superoxide production and neurotoxicity. Nature, 364, 535ā€“537.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lai, M. M., Burnett, P. E., Wolosker, H., Blackshaw, S., & Snyder, S. H. (1998). Cain, a novel physiologic protein inhibitor of calcineurin. The Journal of Biological Chemistry, 273, 18325ā€“18331.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Landshamer, S., Hoehn, M., Barth, N., Duvezin-Caubet, S., Schwake, G., Tobaben, S., Kazhdan, I., Becattini, B., Zahler, S., Vollmar, A., Pellecchia, M., Reichert, A., Plesnila, N., Wagner, E., & Culmsee, C. (2008). Bid-induced release of AIF from mitochondria causes immediate neuronal cell death. Cell Death and Differentiation, 15, 1553ā€“1563.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: A generator of pain hypersensitivity by central neural plasticity. The Journal of Pain, 10, 895ā€“926.

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Archiv: European Journal of Physiology, 460, 525ā€“542.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lazarewicz, J. W., Wroblewski, J. T., Palmer, M. E., & Costa, E. (1988). Activation of N-methyl-d-aspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharmacology, 27, 765ā€“769.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lefebvre, K. A., & Robertson, A. (2010). Domoic acid and human exposure risks: A review. Toxicon, 56, 218ā€“230.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lipton, S. A. (2004). Turning down, but not off. Nature, 428, 473.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lipton, S. A. (2007). Pathologically activated therapeutics for neuroprotection. Nature Reviews Neuroscience, 8, 803ā€“808.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lipton, S. A., & Rosenberg, P. A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. The New England Journal of Medicine, 330, 613ā€“622.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J., & Stamler, J. S. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 364, 626ā€“632.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu, X., Kim, C. N., Yang, J., Jemmerson, R., & Wang, X. (1996). Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell, 86, 147ā€“157.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu, J., Liu, M. C., & Wang, K. K. (2008). Calpain in the CNS: From synaptic function to neurotoxicity. Science Signaling, 1, re1.

    PubMedĀ  Google ScholarĀ 

  • Lodge, D. (2009). The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology, 56, 6ā€“21.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lu, Y. M., Yin, H. Z., Chiang, J., & Weiss, J. H. (1996). Ca2+-permeable AMPA/kainate and NMDA channels: High rate of Ca2+ influx underlies potent induction of injury. The Journal of Neuroscience, 16, 5457ā€“5465.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lubisch, W., Beckenbach, E., Bopp, S., Hofmann, H. P., Kartal, A., Kastel, C., Lindner, T., Metz-Garrecht, M., Reeb, J., Regner, F., Vierling, M., & Moller, A. (2003). Benzoylalanine-derived ketoamides carrying vinylbenzyl amino residues: Discovery of potent water-soluble calpain inhibitors with oral bioavailability. Journal of Medicinal Chemistry, 46, 2404ā€“2412.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lucas, D. R., & Newhouse, J. P. (1957). The toxic effect of sodium l-glutamate on the inner layers of the retina. Archives of Ophthalmology, 58, 193ā€“201.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Majewska, M. D., & Bell, J. A. (1990). Ascorbic acid protects neurons from injury induced by glutamate and NMDA. Neuroreport, 1, 194ā€“196.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Martinez-Ruiz, A., Cadenas, S., & Lamas, S. (2011). Nitric oxide signaling: Classical, less classical, and nonclassical mechanisms. Free Radical Biology & Medicine, 51, 17ā€“29.

    CASĀ  Google ScholarĀ 

  • Mattson, M. P. (2003). Excitotoxic and excitoprotective mechanisms: Abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Medicine, 3, 65ā€“94.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Mattson, M. P., Haughey, N. J., & Nath, A. (2005). Cell death in HIV dementia. Cell Death and Differentiation, 12(Suppl. 1), 893ā€“904.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Mcshane, R., Areosa Sastre, A., & Minakaran, N. (2006). Memantine for dementia. Cochrane Database of Systematic Reviews, 2, CD003154.

    Google ScholarĀ 

  • Mehta, A., Prabhakar, M., Kumar, P., Deshmukh, R., & Sharma, P. L. (2013). Excitotoxicity: Bridge to various triggers in neurodegenerative disorders. European Journal of Pharmacology, 698, 6ā€“18.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Meldrum, B. S. (1993). Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathology, 3, 405ā€“412.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Miller, R. G., Mitchell, J. D., & Moore, D. H. (2012). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database of Systematic Reviews, 3, CD001447.

    PubMedĀ  Google ScholarĀ 

  • Mucke, L., & Selkoe, D. J. (2012). Neurotoxicity of amyloid beta-protein: Synaptic and network dysfunction. Cold Spring Harbor Perspectives in Medicine, 2, a006338.

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Nakamura, T., & Lipton, S. A. (2010). Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: Possible pharmacological strategies. Cell Calcium, 47, 190ā€“197.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Nakamura, T., & Lipton, S. A. (2011). Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death and Differentiation, 18, 1478ā€“1486.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science, 258, 597ā€“603.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Nicholls, J. G., Martin, A. R., Fuchs, P. A., Brown, D. A., Diamond, M. E., & Weisblat, D. (2012). From neuron to brain (5th ed.). Sunderland, MA: Sinauer Associates.

    Google ScholarĀ 

  • Nicoletti, F., Bockaert, J., Collingridge, G. L., Conn, P. J., Ferraguti, F., Schoepp, D. D., Wroblewski, J. T., & Pin, J. P. (2011). Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology, 60, 1017ā€“1041.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Nimmrich, V., Reymann, K. G., Strassburger, M., Schoder, U. H., Gross, G., Hahn, A., Schoemaker, H., Wicke, K., & Moller, A. (2010). Inhibition of calpain prevents NMDA-induced cell death and beta-amyloid-induced synaptic dysfunction in hippocampal slice cultures. British Journal of Pharmacology, 159, 1523ā€“1531.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Niswender, C. M., & Conn, P. J. (2010). Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annual Review of Pharmacology and Toxicology, 50, 295ā€“322.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Oā€™collins, V. E., Macleod, M. R., Donnan, G. A., Horky, L. L., Van Der Worp, B. H., & Howells, D. W. (2006). 1,026 experimental treatments in acute stroke. Annals of Neurology, 59, 467ā€“477.

    PubMedĀ  Google ScholarĀ 

  • Okamoto, S. (1951). Epileptogenic action of glutamate directly applied into the brains of animals and inhibitory effects of protein and tissue emulsions on its action. Journal of the Physiological Society, Japan, 13, 555ā€“562.

    CASĀ  Google ScholarĀ 

  • Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 164, 719ā€“721.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Olney, J. W. (1978). Neurotoxicity of excitatory amino acids. In E. G. McGeer, J. W. Olney, & P. L. McGeer (Eds.), Kainic acid as a tool in neurobiology (pp. 95ā€“121). New York, NY: Raven Press.

    Google ScholarĀ 

  • Olney, J. W. (2003). Excitotoxicity, apoptosis and neuropsychiatric disorders. Current Opinion in Pharmacology, 3, 101ā€“109.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Olney, J. W., & Ho, O. L. (1970). Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature, 227, 609ā€“611.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Olney, J. W., & Sharpe, L. G. (1969). Brain lesions in an infant rhesus monkey treated with monosodium glutamate. Science, 166, 386ā€“388.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Olney, J. W., Price, M. T., Labruyere, J., Salles, K. S., Frierdich, G., Mueller, M., & Silverman, E. (1987). Anti-parkinsonian agents are phencyclidine agonists and N-methyl-d-aspartate antagonists. European Journal of Pharmacology, 142, 319ā€“320.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Orrenius, S., Zhivotovsky, B., & Nicotera, P. (2003). Regulation of cell death: The calcium-apoptosis link. Nature Reviews. Molecular Cell Biology, 4, 552ā€“565.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ow, Y. P., Green, D. R., Hao, Z., & Mak, T. W. (2008). Cytochrome c: Functions beyond respiration. Nature Reviews. Molecular Cell Biology, 9, 532ā€“542.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Perez-Pinzon, M. A., Stetler, R. A., & Fiskum, G. (2012). Novel mitochondrial targets for neuroprotection. Journal of Cerebral Blood Flow and Metabolism, 32, 1362ā€“1376.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Perl, T. M., Bedard, L., Kosatsky, T., Hockin, J. C., Todd, E. C., & Remis, R. S. (1990). An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. The New England Journal of Medicine, 322, 1775ā€“1780.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pivovarova, N. B., Hongpaisan, J., Andrews, S. B., & Friel, D. D. (1999). Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: Spatial and temporal characteristics. The Journal of Neuroscience, 19, 6372ā€“6384.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Polster, B. M., Basanez, G., Etxebarria, A., Hardwick, J. M., & Nicholls, D. G. (2005). Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. The Journal of Biological Chemistry, 280, 6447ā€“6454.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Puttfarcken, P. S., Lyons, W. E., & Coyle, J. T. (1992). Dissociation of nitric oxide generation and kainate-mediated neuronal degeneration in primary cultures of rat cerebellar granule cells. Neuropharmacology, 31, 565ā€“575.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rabey, J. M., Nissipeanu, P., & Korczyn, A. D. (1992). Efficacy of memantine, an NMDA receptor antagonist, in the treatment of Parkinsonā€™s disease. Journal of Neural Transmission. Parkinsonā€™s Disease and Dementia Section, 4, 277ā€“282.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Randall, R. D., & Thayer, S. A. (1992). Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. The Journal of Neuroscience, 12, 1882ā€“1895.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Raymond, L. A., Andre, V. M., Cepeda, C., Gladding, C. M., Milnerwood, A. J., & Levine, M. S. (2011). Pathophysiology of Huntingtonā€™s disease: Time-dependent alterations in synaptic and receptor function. Neuroscience, 198, 252ā€“273.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Rego, A. C., Santos, M. S., & Oliveira, C. R. (2000). Glutamate-mediated inhibition of oxidative phosphorylation in cultured retinal cells. Neurochemistry International, 36, 159ā€“166.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Reisberg, B., Doody, R., Stoffler, A., Schmitt, F., Ferris, S., & Mobius, H. J. (2003). Memantine in moderate-to-severe Alzheimerā€™s disease. The New England Journal of Medicine, 348, 1333ā€“1341.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Reynolds, I. J., & Hastings, T. G. (1995). Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. The Journal of Neuroscience, 15, 3318ā€“3327.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rigoulet, M., Yoboue, E. D., & Devin, A. (2011). Mitochondrial ROS generation and its regulation: Mechanisms involved in H2O2 signaling. Antioxidants & Redox Signaling, 14, 459ā€“468.

    CASĀ  Google ScholarĀ 

  • Rizzuto, R., De Stefani, D., Raffaello, A., & Mammucari, C. (2012). Mitochondria as sensors and regulators of calcium signalling. Nature Reviews. Molecular Cell Biology, 13, 566ā€“578.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rothman, S. (1984). Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. The Journal of Neuroscience, 4, 1884ā€“1891.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rothman, S. M., & Olney, J. W. (1986). Glutamate and the pathophysiology of hypoxic ā€“ ischemic brain damage. Annals of Neurology, 19, 105ā€“111.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rothstein, J. D. (1996). Therapeutic horizons for amyotrophic lateral sclerosis. Current Opinion in Neurobiology, 6, 679ā€“687.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sabbagh, M. N., Hake, A. M., Ahmed, S., & Farlow, M. R. (2005). The use of memantine in dementia with Lewy bodies. Journal of Alzheimerā€™s Disease, 7, 285ā€“289.

    PubMedĀ  Google ScholarĀ 

  • Sanz-Blasco, S., Valero, R. A., Rodriguez-Crespo, I., Villalobos, C., & Nunez, L. (2008). Mitochondrial Ca2+ overload underlies AĪ² oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One, 3, e2718.

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Sattler, R., Xiong, Z., Lu, W. Y., Hafner, M., Macdonald, J. F., & Tymianski, M. (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 284, 1845ā€“1848.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Savitz, S. I., & Fisher, M. (2007). Future of neuroprotection for acute stroke: In the aftermath of the SAINT trials. Annals of Neurology, 61, 396ā€“402.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Siman, R., Noszek, J. C., & Kegerise, C. (1989). Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. The Journal of Neuroscience, 9, 1579ā€“1590.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Simon, R. P., Swan, J. H., Griffiths, T., & Meldrum, B. S. (1984). Blockade of N-methyl-d-aspartate receptors may protect against ischemic damage in the brain. Science, 226, 850ā€“852.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Skolnick, P., Popik, P., & Trullas, R. (2009). Glutamate-based antidepressants: 20 years on. Trends in Pharmacological Sciences, 30, 563ā€“569.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J., & Weiss, S. (1985). Glutamate stimulates inositol phosphate formation in striatal neurones. Nature, 317, 717ā€“719.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sugiyama, H., Ito, I., & Hirono, C. (1987). A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature, 325, 531ā€“533.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J., & Goldberg, J. A. (2011). The origins of oxidant stress in Parkinsonā€™s disease and therapeutic strategies. Antioxidants & Redox Signaling, 14, 1289ā€“1301.

    CASĀ  Google ScholarĀ 

  • Susin, S. A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., & Kroemer, G. (1996). Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. The Journal of Experimental Medicine, 184, 1331ā€“1341.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sutherland, B. A., Minnerup, J., Balami, J. S., Arba, F., Buchan, A. M., & Kleinschnitz, C. (2012). Neuroprotection for ischaemic stroke: Translation from the bench to the bedside. International Journal of Stroke, 7, 407ā€“418.

    PubMedĀ  Google ScholarĀ 

  • Syntichaki, P., & Tavernarakis, N. (2003). The biochemistry of neuronal necrosis: Rogue biology? Nature Reviews Neuroscience, 4, 672ā€“684.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Takano, T., Lin, J. H., Arcuino, G., Gao, Q., Yang, J., & Nedergaard, M. (2001). Glutamate release promotes growth of malignant gliomas. Nature Medicine, 7, 1010ā€“1015.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Teitelbaum, J. S., Zatorre, R. J., Carpenter, S., Gendron, D., Evans, A. C., Gjedde, A., & Cashman, N. R. (1990). Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. The New England Journal of Medicine, 322, 1781ā€“1787.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tenneti, L., & Lipton, S. A. (2000). Involvement of activated caspase-3-like proteases in N-methyl-d-aspartate-induced apoptosis in cerebrocortical neurons. Journal of Neurochemistry, 74, 134ā€“142.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tenneti, L., Dā€™emilia, D. M., Troy, C. M., & Lipton, S. A. (1998). Role of caspases in N-methyl-d-aspartate-induced apoptosis in cerebrocortical neurons. Journal of Neurochemistry, 71, 946ā€“959.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Thayer, S. A., & Wang, G. J. (1995). Glutamate-induced calcium loads: Effects on energy metabolism and neuronal viability. Clinical and Experimental Pharmacology & Physiology, 22, 303ā€“304.

    CASĀ  Google ScholarĀ 

  • Trapp, B. D., & Stys, P. K. (2009). Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurology, 8, 280ā€“291.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Traynelis, S. F., Wollmuth, L. P., Mcbain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J., & Dingledine, R. (2010). Glutamate receptor ion channels: Structure, regulation, and function. Pharmacological Reviews, 62, 405ā€“496.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Troy, C. M., Akpan, N., & Jean, Y. Y. (2011). Regulation of caspases in the nervous system implications for functions in health and disease. Progress in Molecular Biology and Translational Science, 99, 265ā€“305.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tymianski, M. (2010). Can molecular and cellular neuroprotection be translated into therapies for patients?: Yes, but not the way we tried it before. Stroke, 41, S87ā€“S90.

    PubMedĀ  Google ScholarĀ 

  • Van Houten, B., Woshner, V., & Santos, J. H. (2006). Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair, 5, 145ā€“152.

    PubMedĀ  Google ScholarĀ 

  • Vandenabeele, P., Orrenius, S., & Zhivotovsky, B. (2005). Serine proteases and calpains fulfill important supporting roles in the apoptotic tragedy of the cellular opera. Cell Death and Differentiation, 12, 1219ā€“1224.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Vandongen, A. M. (2009). Biology of the NMDA receptor. Boca Raton, FL: CRC Press.

    Google ScholarĀ 

  • Volterra, A., Trotti, D., Cassutti, P., Tromba, C., Salvaggio, A., Melcangi, R. C., & Racagni, G. (1992). High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. Journal of Neurochemistry, 59, 600ā€“606.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Vosler, P. S., Brennan, C. S., & Chen, J. (2008). Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Molecular Neurobiology, 38, 78ā€“100.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Wang, K. K., Nath, R., Posner, A., Raser, K. J., Buroker-Kilgore, M., Hajimohammadreza, I., Probert, A. W., Jr., Marcoux, F. W., Ye, Q., Takano, E., Hatanaka, M., Maki, M., Caner, H., Collins, J. L., Fergus, A., Lee, K. S., Lunney, E. A., Hays, S. J., & Yuen, P. (1996). An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proceedings of the National Academy of Sciences of the United States of America, 93, 6687ā€“6692.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Wang, H. G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., Mckeon, F., Bobo, T., Franke, T. F., & Reed, J. C. (1999). Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science, 284, 339ā€“343.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ward, M. W., Rego, A. C., Frenguelli, B. G., & Nicholls, D. G. (2000). Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. The Journal of Neuroscience, 20, 7208ā€“7219.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Watkins, J. C. (1962). The synthesis of some acidic amino acids possessing neuropharmacological activity. Journal of Medicinal and Pharmaceutical Chemistry, 91, 1187ā€“1199.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Watkins, J. C. (2000). l-Glutamate as a central neurotransmitter: Looking back. Biochemical Society Transactions, 28, 297ā€“309.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Watkins, J. C., & Evans, R. H. (1981). Excitatory amino acid transmitters. Annual Review of Pharmacology and Toxicology, 21, 165ā€“204.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Watkins, S., & Sontheimer, H. (2012). Unique biology of gliomas: Challenges and opportunities. Trends in Neurosciences, 35, 546ā€“556.

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Weil-Malherbe, H. (1950). Significance of glutamic acid for the metabolism of nervous tissue. Physiological Reviews, 30, 549ā€“568.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu, H. Y., Tomizawa, K., & Matsui, H. (2007). Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Medica Okayama, 61, 123ā€“137.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., & Wang, X. (1997). Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science, 275, 1129ā€“1132.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ye, Z. C., & Sontheimer, H. (1999). Glioma cells release excitotoxic concentrations of glutamate. Cancer Research, 59, 4383ā€“4391.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yi, J. H., & Hazell, A. S. (2006). Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochemistry International, 48, 394ā€“403.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., & Dawson, V. L. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 297, 259ā€“263.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zoratti, M., & Szabo, I. (1995). The mitochondrial permeability transition. Biochimica et Biophysica Acta, 1241, 139ā€“176.

    PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. PiƱa-Crespo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

PiƱa-Crespo, J.C., Sanz-Blasco, S., Lipton, S.A. (2014). Concept of Excitotoxicity via Glutamate Receptors. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_125

Download citation

Publish with us

Policies and ethics