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You encountered the Poisson distribution in problems at the end of the previous chapter. The Poisson distribution is useful when the random variable is a count of the number of rare events occurring per unit time, unit volume, unit distance, etc. For example, the number of new cases of rhabdomyosarcoma (a rare form of cancer) occurring in Johnson County, Iowa, each year might be represented as a Poisson random variable.
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                                6.1 Poisson
You encountered the Poisson distribution in problems at the end of the previous chapter. The Poisson distribution is useful when the random variable is a count of the number of rare events occurring per unit time, unit volume, unit distance, etc. For example, the number of new cases of rhabdomyosarcoma (a rare form of cancer) occurring in Johnson County, Iowa, each year might be represented as a Poisson random variable. So might the number of flaws in each 1,000 feet of yarn produced by a spinning machine. A Poisson random variable can take on only nonnegative integer values.
In order for the Poisson distribution to be appropriate, there is a constant average rate at which the events occur, and the numbers of events in disjoint intervals (different years, different segments of yarn, etc.) must be independent. In our examples, this implies that if there were an unusually large number of new rhabdomyosarcoma cases in Johnson County in one particular year, that would not affect the probability distribution for the number of new cases in the following year. Thus, the Poisson distribution would not be appropriate for counts of a contagious disease.


6.2 Normal: Unknown Mean, Variance Assumed Known
So far, we have been considering discrete data—binary responses to survey questions and integer counts of rare events. Thus, the distributions of the random variables of interest, and the resulting likelihoods, have been probability mass functions. Now we will begin to consider cases in which the data are realizations of continuous random variables, which are described by probability density functions (pdfs).
As you know, there are many parametric families of continuous pdfs. Both frequentists and Bayesians must use care in choosing the density that is likely to best describe the population of values from which their sample data is going to be drawn.
The normal (also called the Gaussian) density is one of the most commonly used pdfs, and I am sure you are familiar with its bell-shaped density curve. The normal density is a good model for data when the random variable is continuous-valued, the distribution of values in the population is likely to be symmetric around a single mode, and the tails of the distribution are not heavy. It is a good choice for many variables that are measurements on living things, like weights, body temperatures, or heart rates of a species of mammals. The normal density is not appropriate for variables for which the population distribution is likely to be skewed, such as household incomes.
You should be familiar with the normal probability density function, here shown for a random variable Y from a normal density with mean μ and population variance σ2: 

$$\begin{array}{rcl} & & Y \sim N(\mu ,{\sigma }^{2}) \\ & & \quad p(y\vert \mu ,{\sigma }^{2}) = \frac{1} {\sqrt{2\pi }\sigma }\ exp\left (-\frac{{(y - \mu )}^{2}} {2{\sigma }^{2}} \right ),\qquad -\infty< y < \infty\\ \end{array}$$



            6.2.1 Example: Mercury Concentration in the Tissue of Edible Fish
You probably are aware that the US Food and Drug Administration has recommended that pregnant women, nursing mothers, and young children avoid eating certain types of fish and limit their consumption of others. In addition, state and local governments sometimes issue advisories to limit consumption of fish caught in particular local rivers or lakes. Both of these kinds of advisories occur because some fish and shellfish contain high levels of mercury, which can harm the developing nervous systems of fetuses, infants, and young children.
Mercury is a chemical element that occurs naturally in the environment and can also be emitted into the air by certain industrial processes. Rain washes mercury out of the air and deposits it on the ground, from which it can run off into lakes and rivers. Bacteria in the water convert elemental mercury into methyl mercury (meHG), the form of mercury that has neurotoxic effects. The bacteria are eaten by plankton, which are eaten by small fish, which in turn are eaten by larger fish. With each ascending level of the food chain, the concentration of meHG increases, so that the concentration of meHG in the tissues of large fish may be thousands of times as high as the concentration of mercury in the water. The human body can eliminate meHG only slowly. If a woman ingests meHG from fish at a higher rate than her body can eliminate it, the level of meHG builds up in her tissues. Methyl mercury can cross the blood–brain barrier. Thus, high levels of mercury in the tissue of a pregnant woman or nursing mother can be transmitted to her infant’s brain through her blood or breast milk.
In this book, we will use Bayesian methods to examine the issue of mercury in fish from two perspectives. In the present chapter, we will study the levels of mercury found in samples of fish tissue, and in a future chapter, we will apply Bayesian modeling to investigate mercury deposition from rainfall in the continental United States.
Our first example dataset includes mercury concentrations in parts per million (ppm) measured on 21 tissue samples from common carp caught at a particular site on the Des Moines River in Madison County, Iowa. The data are taken from a database of over 100,000 fish tissue mercury records collected by the Environmental Mercury Mapping, Modeling, and Analysis (EMMMA) project of the US Geological Survey (http://emmma.usgs.gov/datasets.aspx). Since data on concentrations of chemicals often are right skewed, the log transformation frequently is used to symmetrize their distributions. We will follow that practice with this
According to the Natural Resources Defense Council (\url{http://www.nrdc.org/health/effects/mercury/guide.asp}) the concentrations of mercury in fish tissue fall into the following categories: 
	
                  Least mercury: Less than 0.09 parts per million ( − 2.41 on the log scale)

                
	
                  Moderate mercury: From 0.09 to 0.29 parts per million ( − 2.41 to − 1.24 on the log sale)

                
	
                  High mercury: From 0.29 to 0.49 parts per million ( − 1.24 to − 0.71 on the log scale)

                
	
                  Highest mercury: More than 0.49 parts per million (more than − 0.71 on the log scale)

                


              We wish to estimate the mean μ of log-transformed mercury concentration in the tissue of the population of all fish caught in the Des Moines River at the location represented by our data. In addition, we wish to estimate the probability that μ falls into each of these four categories.
6.2.2 Parametric Family for Likelihood
Since we plan to use the normal density as the distribution of the observed data, we should check whether the sample values look like draws from a normal population. However, we don’t want to actually look at the numeric values of the data until after we have specified the prior because we don’t want to let the current data influence our prior in any way. Figure 6.1 is a histogram of the log-transformed concentrations—without showing the actual range of values covered by the data. Although the histogram is not perfectly symmetrical and bell shaped, for a sample of only 21 observations, it is about as close as real data gets.

Fig. 6.1[image: figure 1]
Histogram of log mercury concentrations in fish tissue from Des Moines River


Full size image


              When, as here, there are more than one observation in the dataset, we must begin constructing our Bayesian model by specifying the joint distribution of all the data. The issue of exchangeability, which we have met in previous chapters, arises again. Are we comfortable with the assumption that the observations in the dataset are random draws from the same normal distribution? If we don’t have information that would lead us to expect some observations, or groups of observations, to be systematically different from others, then the assumption of exchangeability is reasonable.
If we consider observations in a sample exchangeable, we typically specify their joint distribution by treating the observations as conditionally independent given one or more shared parameters. That means that we can write the joint density simply as the product of the densities of the individual observed values:

                
$$\begin{array}{rcl} p({y}_{1},{y}_{2},\ldots {y}_{n}\vert \mu ,{\sigma }^{2})& =& \prod\limits _{i=1}^{18} \frac{1} {\sqrt{2\pi {\sigma }^{2}}}exp\left (-\frac{{({y}_{i} - \mu )}^{2}} {2{\sigma }^{2}} \right ) \\ & =& \frac{1} {{(2\pi {\sigma }^{2})}^{\frac{n} {2} }} exp\left (-\frac{\sum\limits _{i=1}^{n}{({y}_{i} - \mu )}^{2}} {2{\sigma }^{2}} \right ) \\ & =& \frac{1} {{(2\pi {\sigma }^{2})}^{\frac{n} {2} }} exp\left (-\frac{\sum\limits _{i=1}^{n}{({y}_{i} -\bar{ y})}^{2}} {2{\sigma }^{2}} \right )exp\left (-\frac{n\ {(\bar{y} - \mu )}^{2}} {2{\sigma }^{2}} \right )\end{array}$$


                    (6.1)
                


              Exchangeability is sometimes defined as “invariance to permutations of the indices.” It is easy to see what this means in this case. The indices are the subscripts on the y’s. If for some reason we decided to swap y
                2 with y
                9, the product in (6.1) would be unchanged because the same μ and σ2 are involved in the terms for all they’s.
In Problem 6.1, you will show how the last line in (6.1) was obtained.
6.2.3 Likelihood for μ Assuming that Population Variance Is Known
We will perform our first analysis of the mercury concentration data under an unrealistic assumption: that the exact numeric value of the population variance σ2 is known. Of course this is impossible. We could not know the exact value of σ2 unless we had measured every fish that had ever swum the Des Moines River in Madison County, and if we had done that, we would also know the exact value of μ and would not need to use a sample to draw inference! However, studying Bayesian analysis with a normal likelihood as if it were a one-parameter problem (with only μ unknown) is a worthwhile learning experience, because such models will form the building blocks of more complex and realistic models and of the computational methods for fitting them.
If σ2 is assumed to be a known constant, then (6.1) may be viewed as a likelihood for the only unknown parameter, μ:

                
$$\begin{array}{rcl} L(\mu \vert \mathbf{y})& \propto & exp\left (-\frac{n\ {(\bar{y} - \mu )}^{2}} {2{\sigma }^{2}} \right )\end{array}$$


                    (6.2)
                


              That is, the expression in (6.2) is viewed as a function of μ, for a fixed (observed) value of \(\bar{y}\) and a fixed (unrealistically assumed known) value of σ2. The other terms in (6.1) do not contain μ, so with respect to a likelihood for μ, they are just constants and can be dropped.
6.2.4 Sufficient Statistics
Note that \(\bar{y}\) appears in the likelihood instead of all the individual values y
                
                  i
                 from each observation. Recall that a statistic is a number that can be calculated from sample data just by arithmetic. We do not need to know the values of any unknown parameters to calculate a statistic. \(\bar{y}\) is a statistic. When, as in this case, a statistic contains all the information in the data that is useful in estimating the unknown parameter of interest, the statistic is called a sufficient statistic. Using sufficient statistics when they exist makes Bayesian computation much easier.
6.2.5 Finding a Conjugate Prior for μ
Just as was the case when we were dealing with a binomial likelihood and the unknown parameter was the success probability π, there are an infinite number of ways of specifying a prior for the unknown mean μ of a normal distribution. However, a conjugate prior simplifies posterior calculations, so we will identify the parametric family that is conjugate to the likelihood for a normal mean and see whether there is a member of the conjugate family that adequately expresses our prior information.
In seeking a family of densities that is conjugate to the normal likelihood, we are looking for a density in which the random variable appears in the same functional form as μ appears in the normal likelihood. Note that in (6.2), we can reverse the positions of μ and \(\bar{y}\) without changing the value of the expression at all: 

$$\begin{array}{rcl} exp\left (-\frac{n\ {(\bar{y} - \mu )}^{2}} {2{\sigma }^{2}} \right )\qquad = \qquad exp\left (-\frac{n\ {(\mu-\bar{ y})}^{2}} {2{\sigma }^{2}} \right )& &\end{array}$$


                    (6.3)
                


              So we are looking for a density in which the random variable appears in the same form as μ appears on the right hand side of (6.3). But the right hand side of (6.3) is the kernel of a normal density! So the normal density is the conjugate prior for μ in the normal likelihood when σ2 is assumed known.
If we express the likelihood in terms of the sufficient statistic \(\bar{y}\), then we can write the Bayesian normal model as 

$$\begin{array}{rcl} \bar{y}\ \vert \ \mu ,{\sigma }^{2}& \sim & N\left (\mu , \frac{{\sigma }^{2}} {n} \right ) \\ \mu & \sim & N\left ({\mu }_{0},\ {\sigma }_{0}^{2}\right ) \\ \end{array}$$


 In Sect. 6.2.7 we will discuss how to select numeric values for the prior parameters μ0 and σ0
                2 to express our prior knowledge about μ.
Recall that the important implication of conjugacy is that the posterior density will be in the same parametric family as the prior. Thus, in the normal prior/normal likelihood case, the posterior density \(p(\mu \vert \bar{y})\) will also be normal.
6.2.6 Updating from Prior to Posterior in the Normal–Normal Case
I have emphasized that the same density can be parameterized in different ways. It turns out that in Bayesian statistics, writing the normal density in terms of the mean and precision instead of the mean and variance simplifies calculation of the posterior density for μ.
6.2.6.1 Precisions
The precision is the inverse of the variance. The more spread out a distribution is (larger variance), the less precise it is (smaller precision). When reading Bayesian literature or using Bayesian software, you must always make sure whether normal distributions are parameterized in terms of the variance or the precision.
Rewriting our likelihood and prior using precisions yields: 

$$\begin{array}{rcl} \bar{y}\ \vert \ \mu ,{\tau }^{2}& \sim & N\left (\mu , \frac{n} {{\tau }^{2}}\right ) \\ \mu & \sim & N\left ({\mu }_{0},\ \frac{1} {{\tau }_{0}^{2}}\right ) \\ \end{array}$$


 where \({\tau }^{2} = \frac{1} {{\sigma }^{2}}\) and \({\tau }_{0}^{2} = \frac{1} {{\sigma }_{0}^{2}}\).
6.2.6.2 The Posterior Density
Bayes’ rule applies here in the usual way: the posterior density is proportional to the prior times the likelihood. Thus,

                  
$$\begin{array}{rcl} p(\mu \vert \mathbf{y})& \propto & \frac{\sqrt{n}\tau } {\sqrt{2\pi }}\ exp\left (-\frac{n{\tau }^{2}{(\mu-\bar{ y})}^{2}} {2} \right ) \frac{{\tau }_{0}} {\sqrt{2\pi }}\ exp\left (-\frac{{\tau }_{0}^{2}{(\mu- {\mu }_{0}^{2})}^{2}} {2} \right ) \\ & \propto & \ exp\left (-\frac{n{\tau }^{2}{(\mu-\bar{ y})}^{2}} {2} -\frac{{\tau }_{0}^{2}{(\mu- {\mu }_{0}^{2})}^{2}} {2} \right ) \\ & \propto & \ exp\left (-\frac{(n{\tau }^{2} + {\tau }_{0}^{2}){\mu }^{2} + 2\mu (n{\tau }^{2}\bar{y} + {\tau }_{0}^{2}{\mu }_{0})} {2} \right ) \\ & =& exp\left (-\frac{(n{\tau }^{2} + {\tau }_{0}^{2})({\mu }^{2} - 2\mu \frac{n{\tau }^{2}\bar{y}+{\tau }_{ 0}^{2}{\mu }_{ 0}} {(n{\tau }^{2}+{\tau }_{0}^{2})} } {2} \right ) \\ & \propto & exp\left (-\frac{(n{\tau }^{2} + {\tau }_{0}^{2}){(\mu-\frac{n{\tau }^{2}\bar{y}+{\tau }_{ 0}^{2}{\mu }_{ 0}} {(n{\tau }^{2}+{\tau }_{0}^{2})} )}^{2}} {2} \right ) \end{array}$$


                    (6.4)
                


                The last line in (6.4) is the kernel of a normal density:

                  
$$\mu \vert \mathbf{y} \sim N\left (\frac{n{\tau }^{2}\bar{y}\ +\ {\tau }_{0}^{2}{\mu }_{0}} {n{\tau }^{2} + {\tau }_{0}^{2}} ,\ \frac{1} {n{\tau }^{2} + {\tau }_{0}^{2}}\right )$$



                The posterior mean is a weighted average of \(\bar{y}\) and the prior mean. The weights are proportional to the respective precisions, nτ2 and τ0
                  2.
6.2.6.2.1 Equivalent Prior Sample Size
Determining the equivalent prior sample size is easy in this simplified normal model with the data precision τ2 assumed known. Since n real data observations have weight proportional to nτ2, we may think of the prior precision as 

$${\tau }_{0}^{2} = {n}_{ 0}{\tau }^{2}$$


 Thus, the prior contains the same amount of information as \({n}_{0} = \frac{{\tau }_{0}^{2}} {{\tau }^{2}}\) observations.
6.2.6.2.2 Posterior Precision and Posterior Variance
Similarly, the posterior precision is the sum of the precisions from the prior and the likelihood. This makes intuitive sense. A density with a larger precision reflects more information (less uncertainty) about the random variable. The posterior density combines the information from both the prior and the current data, so it contains more information than either of them taken separately. Thus, the posterior precision should be larger than either the prior precision or the precision of \(\bar{y}\).
The posterior variance of μ is the inverse of the precision: 

$$\begin{array}{rcl} V ar(\mu \vert y)\ =\ \frac{1} {n{\tau }^{2} + {\tau }_{0}^{2}}\ = \frac{{\sigma }_{0}^{2}{\sigma }^{2}} {n{\sigma }_{0}^{2} + {\sigma }^{2}}& &\end{array}$$


                    (6.5)
                


                  6.2.7 Specifying Prior Parameters
We saw in Sect. 3.5.2 that there were many strategies for picking the parameter values for a beta prior to go with a binomial likelihood. Similar approaches work for specifying the parameters of a normal prior for a normal mean. Often we will have some degree of knowledge about where the normal population is centered, so choosing the mean of the prior distribution for μ usually is less difficult than picking the prior variance (or precision). Workable strategies include:

	
                  1.
                  
                    Graph normal densities with different variances until you find one that matches your prior information

                  
                
	
                  2.
                  
                    Identify an interval which you believe has 95% probability of trapping the true value of μ, and find the normal density that produces it

                  
                
	
                  3.
                  
                    Quantify your degree of certainty about the value of μ in terms of equivalent prior sample size

                  
                


              6.2.8 Mercury in Fish Tissue
6.2.8.1 Specifying the Prior Parameters
To complete our Bayesian model, we need to choose numeric values for the parameters μ0 and τ0
                  2 of the normal prior on μ. Recall that our data are log-transformed concentrations of mercury in fish tissue and that the units of the untransformed observations were parts per million. I am not an expert on mercury contamination of fish in Iowa rivers, but I do have a source of information.
First, the Iowa Department of Natural Resources web page says that fish caught in Iowa are generally safe to eat and that only occasionally are advisories issued due to mercury levels. Therefore, I expect that fish caught in the Des Moines River will fall into the lowest category of mercury concentrations given in Sect. 6.2.1. On the log scale, the upper bound of that category is − 2.41. Based on these facts, my best guess for the population mean of log-transformed mercury concentrations is − 2.45, so I will use that for the prior mean μ0.
Now we need the prior precision, τ0
                  2. Recall that we are assuming that we magically know the exact value of the population variance (and therefore of the population precision) of log-transformed mercury concentrations in all fish from the Des Moines River. Suppose we know that τ2 = 2. 5. Now I don’t have a very strong belief in my choice of − 2.45 for the prior mean; I am only as confident as I would be if I had seen three previous tissue samples from the Des Moines River. Thus, my equivalent prior sample size is n
                  0 = 3. I should set \({\tau }_{0}^{2}\ =\ {n}_{0}{\tau }^{2}\ =\ 3(2.5) = 7.5\). Thus, my prior is

                  
$$\mu\sim N(-2.45,1/7.5)$$


 where 7.5 is the prior precision. I will verify that this setting matches my prior knowledge by looking at the 95% prior interval for μ produced by this specification. Here are R code and output:
> qnorm( c(0.025, 0.975), -2.45, sqrt( 1/7.5) )[1] -3.165678 -1.734322
Since it is easier to think about concentrations than about log-concentrations, I’ll transform the interval endpoints back to the concentration scale:
> exp(qnorm( c(0.025, 0.975), -2.45, sqrt( 1/7.5) ))[1] 0.04218554 0.17651978

Hmm, those endpoints seem too high. I’ll try again with a Normal ( − 2.75, 1/7.5) density.
> exp(qnorm( c(0.025, 0.975), -2.75, sqrt( 1/7.5) ))[1] 0.03125182 0.13076907

The statement that there is 95% probability that exp(μ) is in the interval (0.031, 0.131) is consistent with my prior belief, so I will use the Normal ( − 2.75, 1/7.5) density as my prior for μ.
6.2.8.2 Computing the Posterior Density
Now that we have completed our prior specification, we finally can look at the data. Figure 6.2 is the histogram with x-axis labels included:

Fig. 6.2[image: figure 2]
Histogram of log mercury concentrations in fish tissue from Des Moines River


Full size image


                Furthermore, the sample mean \(\bar{y} = -2.563\) and the sample size n = 21.
Therefore, the posterior precision is \(21(2.5) + 7.5\ =\ 60\), and the posterior mean is \(\frac{21(2.5)(-2.563)+7.5(-2.75)} {60} \ -\ = -2.586\). That is,

                  
$$\mu \vert \bar{y} \sim N(-2.586,1/60)$$



                This density is shown in Fig. 6.3.

Fig. 6.3[image: figure 3]
Posterior density for μ


Full size image


                Note that \(p(\mu \vert \bar{y})\) and p(μ | y) are equivalent and both notations are correct, since the sufficient statistic \(\bar{y}\) contains all the information regarding μ from the entire vector of data values y.
6.2.8.3 Using the Posterior Density to Perform Inference
As in all Bayesian analyses, the posterior density contains all of our current information about the parameter of interest and will provide the basis for all inference. We stated in Sect. 6.2.1 that we wanted to estimate the population mean μ and to determine the probabilities that μ lies in each of the four mercury-contamination categories specified by the Natural Resources Defense Council. We have already calculated a Bayesian point estimate of μ, the posterior mean:

                  
$$E(\mu \vert \bar{y}) = -2.586$$



                We can complete the estimation procedure by finding a 95% equal-tail posterior credible set for μ:
>qnorm( c(0.025, 0.975), -2.586, sqrt(1/60) )[1] -2.839030 -2.332970

Thus, a person who agreed with my prior, after seeing the current data, would believe that there is 95% probability that μ is in the interval ( − 2.839, − 2.333).
We can exponentiate the endpoints of the interval to obtain the corresponding 95% interval on the original (not log-transformed) scale:
> exp(qnorm( c(0.025, 0.975), -2.586, sqrt(1/60) ))[1] 0.05848235 0.09700723

Note that when we use a monotonic transformation such as the log transformation, we can obtain quantiles on the original scale by applying the reverse transformation to quantiles obtained on the transformed scale. We cannot do the same thing with means. A well-known inequality in mathematics called Jensen’s inequality (Jensen 1906), applied to the special case of the log function, states

                  
$$log(E(Y ))\ \neq \ E(log(Y ))$$



                The pnorm function in R can help us find the posterior probabilities that μ lies in each of the categories defined by the NRDC.
> pnorm( c(-2.41, -1.24,-0.71), -2.586, sqrt(1/60) )[1] 0.9136045 1.0000000 1.0000000

Thus, \(Pr(\mu< -2.41\vert \bar{y}) = 0.914\) and \(Pr(-2.41 < \mu< -1.24)\) is about 0.086. The posterior probability that μ is in either of the highest two categories of log concentration is close to zero—good news for consumers of fish caught in the Des Moines River!
6.2.9 The Jeffreys Prior for the Normal Mean
It can be shown that the Jeffreys prior for the normal mean when σ2 is assumed known is 

$$p(\mu ) \propto1,\ \ -\infty< \mu< \infty $$



              This obviously is an improper prior, since the integral ∫ − ∞
                
                ∞1dμ is not finite. It can be thought of as the limiting case of an N(μ0, σ0
                2) density as the prior variance σ0
                2 goes to ∞. Equivalently, it is the limit of an N(μ0, τ0
                2) density as the prior precision τ0
                2 goes to 0. As both interpretations make clear, it contains no prior information at all. To say the same thing a third way, since the prior precision τ0
                2 = 0, the equivalent prior sample size n
                0 must also be zero: this prior contains the same amount of information as a data sample with 0 observations!
When the Jeffreys prior is combined with a normal likelihood, in the posterior density calculations in (6.4), all the terms that are multiples of τ0
                2 drop out, leaving the posterior density (expressed in terms of its precision): 

$$\begin{array}{rcl} \mu \vert \bar{y}\ \sim \ N\left (\bar{y},\ \frac{n} {{\tau }^{2}}\right )& &\end{array}$$


                    (6.6)
                

 That is, the posterior looks just like the likelihood, with the roles of μ and \(\bar{y}\) reversed. In this case, the Bayesian posterior mean will equal the frequentist maximum likelihood estimate, and the endpoints of frequentist confidence intervals for each confidence level will be the same as those of Bayesian credible sets with the same posterior probability level. Of course, the interpretations of the two types of intervals will be different.
If we had used a Jeffreys prior in our analysis of the mercury concentration data, the resulting posterior density would have been

                
$$\mu \vert \bar{y} = -2.563 \sim N\left (-2.563, \frac{1} {52.5}\right )$$



              Note that the posterior precision is smaller this time than when we used an informative prior. As expected, the posterior credible sets (on the log scale and original scale, respectively) also will be wider:
> qnorm( c(0.025, 0.975), -2.563, sqrt(1/52.5) )[1] -2.833501 -2.292499
> exp(qnorm( c(0.025, 0.975), -2.563, sqrt(1/52.5) ))[1] 0.05880663 0.10101369

In addition, the posterior probabilities that μ lies in each of the four intervals would have been 0.866, 0.134, 0, and 0, respectively.
6.2.10 Posterior Predictive Density in the Normal–Normal Model
Suppose we wish to predict concentrations of mercury in future samples of tissue from fish caught in the Des Moines River. We encountered the concept of a posterior predictive distribution in the context of our survey data example when we wished to predict the number of “yesses” in a future survey sample. In that case, in which the data were realizations of a binomial random variable, the posterior predictive distribution was discrete and provided a probability for each of the possible numbers of successes in the future sample.
In our current problem, the data are realizations of a continuous-valued random variable, so the posterior predictive distribution will be a density rather than a set of probabilities. However, the same logic is used to obtain it. Since we are assuming that the population of log-transformed mercury concentration values is normal with variance known to be 2.5 log ppm and if μ were known, the density of any possible future value would be 

$$\begin{array}{rcl} p({y}_{new}\vert \mathbf{y},\mu ,{\sigma }^{2})\ =\ \frac{1} {\sqrt{2\pi }\sigma }exp\left (-\frac{{(y - \mu )}^{2}} {2{\sigma }^{2}} \right )& &\end{array}$$


                    (6.7)
                


              Since μ is not known exactly, and all of our knowledge about it is contained in the posterior density p(μ | y), we must integrate (6.7) over the posterior density to obtain the posterior predictive density:

                
$$\begin{array}{rcl} p({y}_{new}\vert \mathbf{y} ={ \int\nolimits \nolimits }_{-\infty }^{\infty } \frac{1} {\sqrt{2\pi }\sigma }exp\left (-\frac{{(y - \mu )}^{2}} {2{\sigma }^{2}} \right ) \frac{1} {\sqrt{2\pi }{\sigma }_{1}}exp\left (-\frac{{(\mu- {\mu }_{1})}^{2}} {2{\sigma }_{1}^{2}} \right )d\mu & &\end{array}$$


                    (6.8)
                

 where μ1 and σ1
                2, respectively, denote the posterior mean and variance of μ as given in (6.4) and (6.5). If we do the integral, we find that the posterior predictive distribution is normal, with mean equal to the posterior mean of μ and variance equal to the sum of the posterior variance of μ and the (supposedly known) population variance σ2, that is, 

$$\begin{array}{rcl}{ y}_{new}\vert \mathbf{y}\ \sim \ N({\mu }_{1},{\sigma }_{1}^{2} + {\sigma }^{2})& &\end{array}$$


                    (6.9)
                

 This conclusion also makes intuitive sense. The larger the variance in a distribution, the more uncertainty it reflects. Our uncertainty about a future individual value of y includes all the uncertainty we have about the value of the population mean μ and all the variability between individual members of the population.
We can use (6.9) to obtain the posterior predictive density of the log mercury concentration in future tissue samples of fish from the Des Moines River. Let’s continue the analysis with the Jeffreys prior, begun in Sect. 6.2.9. Rewriting the posterior density in terms of its variance, we have 

$$\mu \vert \bar{y}\ \sim \ N\left (-2.563, \frac{1} {52.5}\right ) = 0.019$$


 Furthermore, in the population of individual tissue samples, the variance of log mercury concentration is assumed known to be \(\frac{1} {2.5} = 0.4\).
Therefore, the posterior predictive density for a future measurement y
                
                  new
                 is 

$${y}_{new}\vert \mathbf{y}\ \sim N(-2.563,0.419)$$



              The qnorm function in R will give us a 95% posterior predictive interval for a new observation:
> qnorm( c(0.025, 0.975), -2.563, sqrt(0.419) )[1] -3.831689 -1.294311

Thus, based on a Bayesian analysis using the noninformative Jeffreys prior, we would say that there is 95% probability that the log concentration in a future individual tissue sample will lie between − 3.83 and − 1.29. Again, we can exponentiate these interval endpoints to get the interval on the original (not log-transformed) scale:
> exp(qnorm( c(0.025, 0.975), -2.563, sqrt(0.419) ))[1] 0.02167298 0.27408659



6.3 Normal: Unknown Variance, Mean Assumed Known
Usually when we use a normal likelihood in either a frequentist or a Bayesian analysis, the unknown parameter of primary interest is the population mean μ. However, sometimes interest centers instead on the spread of the population distribution—that is, its variance σ2. Quality control in industry is a real-world setting in which assessing variance is crucial. For example, if a manufacturing plant produces bullets for a particular caliber of gun, not only the mean diameter of the bullets must be correct but also the variance in bullet diameters must be sufficiently small in order for all bullets to fit and fire correctly.
As we did with the normal mean, we first will study Bayesian inference for the normal variance under the unrealistic assumption that the other parameter (in this case μ) is a known number. This “single-parameter” model, too, is an important building block of realistic models that we will encounter later.
Recall the joint distribution of n observations modeled as conditionally independent draws from a normal population with known mean μ and unknown variance σ2: 

$$\begin{array}{rcl} p({y}_{1},\ldots ,{y}_{n}\vert \mu ,{\sigma }^{2})& =& \prod\limits _{i=1}^{n} \frac{1} {\sqrt{2\pi }\sigma }exp\left [-\frac{{({y}_{i} - \mu )}^{2}} {2{\sigma }^{2}} \right ] \\ & \propto & \frac{1} {{({\sigma }^{2})}^{\frac{n} {2} }} exp\left [-\frac{\sum\limits _{i=1}^{n}{({y}_{i} - \mu )}^{2}} {2{\sigma }^{2}} \right ] \\ \end{array}$$



            The sufficient statistic for σ2 is the single number \(\frac{\sum\nolimits {({y}_{i}-\mu )}^{2}} {n}\). We can rewrite the joint distribution using this sufficient statistic, represented by the symbol v, this way:

              
$$p(y\vert {\sigma }^{2})\ \propto \ \frac{1} {{({\sigma }^{2})}^{\frac{n} {2} }} exp\left [-\frac{nv} {2{\sigma }^{2}}\right ]$$



            Again, our next step in inference is to change our perspective to one in which the data have been observed, so the sufficient statistic has a fixed, known value, and we wish to evaluate the expression as a function of changing values of the unknown parameter σ2. The likelihood of σ2 is 

$$\begin{array}{rcl} L({\sigma }^{2};\mathbf{y})\ \propto \ \frac{1} {{({\sigma }^{2})}^{\frac{n} {2} }} exp\left [-\frac{nv} {2{\sigma }^{2}}\right ],\ \ 0 < {\sigma }^{2} < \infty & &\end{array}$$


                    (6.10)
                


            6.3.1 Conjugate Prior for the Normal Variance, μ Assumed Known
In preparation for a conjugate Bayesian analysis, we must identify the parametric family of prior densities for σ2. We need a density for a random variable with support on the positive real line, in which the random variable appears in the same functional form as in (6.10)—in a denominator raised to a power and again in the denominator of an exponent. Before reading any further, see whether you can find such a family in Tables A.1, A.2, or A.3
The conjugate family is inverse gamma. A conjugate prior for σ2 would be 

$$\begin{array}{rcl} p({\sigma }^{2})\ =\ \frac{{\beta }^{\alpha }} {\Gamma \alpha } \frac{1} {{({\sigma }^{2})}^{\alpha +1}}exp\left (-\frac{\beta } {{\sigma }^{2}}\right ),\qquad 0 < {\sigma }^{2} < \infty & &\end{array}$$


                    (6.11)
                

 There are several strategies for specifying the parameters of an inverse gamma prior density to express our knowledge or opinion about a normal variance. We could:

	
                  1.
                  
                    Plot inverse gamma densities with different parameter values until we found one that matched our prior knowledge.

                  
                
	
                  2.
                  
                    Decide on appropriate numeric values for the mean and variance of the prior distribution for σ2 and solve the expressions for mean of an inverse gamma density and variance of an inverse. gamma density for α and β (See table of distributions in the appendix).

                  
                
	
                  3.
                  
                    Use an R function to find values of α and β that produce a prior probability interval that matches our prior knowledge.

                  
                


              Strategy 3 is a little trickier with inverse gamma densities than with the other densities that we have studied so far, because R does not have a built-in set of functions for inverse gamma densities. (Some R packages do offer such functions, but we can do what we need here without them). As you will prove in Problem 6.3, if X and Y are two random variables such that 0 < X, Y < ∞ and \(Y \ =\ \frac{1} {X}\), if X  ∼  Gamma(α,  β), then Y   ∼  Inverse Gamma(α,  β),  0 < X, Y < ∞.
We know that R does have functions for gamma random variables. Furthermore, for any strictly positive values x and y, the inverse function is monotonic: if x < y, then \(\frac{1} {x} > \frac{1} {y}\). The same principle concerning monotonic transformations and endpoints that we used in Sect. 6.2.8.3 helps us here. Specifically, suppose we want the 0.025 and 0.975 quantiles of an IG(3, 6) density. These will be the inverses of the 0.975 and 0.025 quantiles of the Gamma(3,6) density, obtained with R as follows:
> 1 / qgamma( c(0.975, 0.025), 3, 6)[1] 0.8304857 9.6981903

6.3.2 Obtaining the Posterior Density
As always, the posterior density will be proportional to the prior times the likelihood: 

$$\begin{array}{rcl} p({\sigma }^{2}\vert \mathbf{y})& \propto & \frac{1} {{({\sigma }^{2})}^{\alpha +1}}exp\left (-\frac{\beta } {{\sigma }^{2}}\right ) \times\frac{1} {{({\sigma }^{2})}^{\frac{n} {2} }} exp\left [-\frac{nv} {2{\sigma }^{2}}\right ],\ \ 0 < {\sigma }^{2} < \infty\\ &\propto & \frac{1} {{({\sigma }^{2})}^{\frac{n} {2} +\alpha +1}}exp\left [- \frac{1} {{\sigma }^{2}}\left (\frac{nv} {2} + \beta \right )\right ],\qquad 0 < {\sigma }^{2} < \infty\end{array}$$


                    (6.12)
                


              Sure enough, this is the kernel of another inverse gamma density: 

$$\begin{array}{rcl}{ \sigma }^{2}\vert \mathbf{y}\ \sim \ IG\left (\alpha+ \frac{n} {2} ,\beta+ \frac{nv} {2} \right )& &\end{array}$$


                    (6.13)
                

 The form of the posterior density reveals another strategy for specifying an inverse gamma prior, involving the equivalent prior sample size. Clearly the α parameter in the prior is analogous to the data sample size n divided by 2. Similarly, β from the prior corresponds to n times the average squared distance of the data values y
                
                  i
                 from the supposedly known value μ. Thus, we may think of the parameters of an inverse gamma prior for a normal variance this way: 

$$\begin{array}{rcl}{ \sigma }^{2}\ \sim \ IG\left (\frac{{n}_{0}} {2} , \frac{{n}_{0}{\sigma }_{0}^{2}} {2} \right )& &\end{array}$$


                    (6.14)
                

 contains the same information as if we had seen a previous real data sample of size n
                0 in which the average squared distance of the observations from μ was σ0
                2.
6.3.3 Jeffreys Prior for Normal Variance, Mean Assumed Known
It can be shown that the Jeffreys prior for a normal variance is 

$$\begin{array}{rcl} p({\sigma }^{2})\ \propto \ \frac{1} {{\sigma }^{2}},\qquad 0 < {\sigma }^{2} < \infty & &\end{array}$$


                    (6.15)
                


              It is an improper prior, since \({\int\nolimits \nolimits }_{0}^{\infty } \frac{1} {{\sigma }^{2}} d{\sigma }^{2}\) is not finite. This is the limit of an inverse gamma prior as both parameters go to 0.
An inverse gamma density is proper only if both of its parameters are strictly positive. The Jeffreys prior can be used for inference regarding a normal variance only if, when combined with the likelihood, the posterior produced is a proper inverse gamma. Consider (6.13) in the case in which α and β from the prior were both equal to 0. The data would have to fill two requirements in order for both parameters in the posterior inverse gamma density to be strictly positive: the sample size n would have to be at least 1, so that \(\frac{n} {2} > 0\), and at least one observed data point y
                
                  i
                 in the dataset would have to have value not equal to the known μ so that \(v = \frac{\sum\limits _{i=1}^{n}{({y}_{ i}-\mu )}^{2}} {n} > 0\). Needless to say, these criteria are met in virtually all datasets.


6.4 Normal: Unknown Precision, Mean Assumed Known
Since the precision parameter in a normal density is just the inverse of the variance, if we do inference on one, we can easily derive the corresponding inference for the other. Specifically, if 

$${\tau }^{2} = \frac{1} {{\sigma }^{2}},$$


 and the prior on σ2 is specified as 

$${\sigma }^{2}\ \sim \ IG(\alpha ,\beta )$$


 then the equivalent prior induced on τ2 is 

$${\tau }^{2} \sim G(\alpha ,\beta )$$


 and the resulting posterior density for τ2 is 

$${\tau }^{2}\vert \mathbf{y}\ \sim \ G\left (\alpha+ \frac{n} {2} ,\beta+ \frac{nv} {2} \right )$$



            6.4.1 Inference for the Variance in the Mercury Concentration Problem
Suppose now that we magically knew that the mean μ of log-transformed mercury concentration in tissue from fish caught in the Des Moines River was − 2.5 log ppm, and we wanted to use our data to infer about the population variance σ2. We would have had to define our prior on σ2 before seeing that data. Perhaps an expert on mercury contamination told us that he was 95% sure that the variance was between 0.25 and 0.75. To find the parameters of an inverse gamma density for which those are the 0.025 and 0.975 quantiles, respectively, I can use trial and error with the qgamma function. I know that the mean of an inverse gamma density is \(\frac{\beta } {\alpha -1}\), so I will begin with an α and a β for which that ratio is around 0.5. After some experimentation, I arrive at:
> 1/qgamma( c(0.975, 0.025), 13.3,5.35)[1] 0.2506642 0.7492485

So my prior on σ2 is IG(13.3, 5.35). Now in the real data, n = 21 and v = 0. 371. Thus, the posterior density obtained is 

$${\sigma }^{2}\vert \mathbf{y}\ \sim \ IG(23.8,9.25)$$


 The posterior mean E(σ2 | y) = 0. 406 and a 95% equal tail posterior credible set is
> 1/qgamma( c(0.975, 0.025), 23.8, 9.25)=[1] 0.2699072 0.6078543



6.5 Problems

              6.1

              We used the following identity in deriving the likelihood for the mean μ of a normal distribution. Verify that it is true. 

$$\sum\limits _{i=1}^{n}{({y}_{ i} - \mu )}^{2}\ =\ \sum\limits _{i=1}^{n}{({y}_{ i} -\bar{ y})}^{2} +\ n\ {(\bar{y} - \mu )}^{2}$$



              
            
              6.2

              The observed weights (in grams) of 20 pieces of candy randomly sampled from candy-making machines in a certain production area are as follows:

              46 58 40 47 4753 43 48 50 5549 50 52 56 4954 51 50 52 50


              Assume that weights of this type of candy are known to follow a normal distribution, and that the mean weight of candies produced by machines in this area is known to be 51 g. We are trying to estimate the variance, which we will now call θ.

	
                  1.
                  
                    What is the conjugate family of prior distributions for a normal variance (not precision) when the mean is known?

                  
                
	
                  2.
                  
                    Suppose previous experience suggests that the expected value of θ is 12 and the variance of θ is 4. What parameter values are needed for the prior distribution to match these moments?

                  
                
	
                  3.
                  
                    What is the posterior distribution p(θ | y) for these data under the prior from the previous step?

                  
                
	
                  4.
                  
                    Find the posterior mean and variance of θ.

                  
                
	
                  5.
                  
                    Comment on whether the assumptions of known mean or known variance are likely to be justified in the situation in Problem 6.1.

                  
                


              
            
              6.3

              Consider two random variables X and Y,  0 < X, Y < ∞, where \(Y \ =\ \frac{1} {X}\). Show that if X  ∼  Gamma(α,  β), then Y   ∼  Inverse Gamma(α,  β),  0 < X, Y < ∞.
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