Skip to main content

Elliptic Curves over Finite Fields: Number Theoretic and Cryptographic Aspects

  • Chapter
Advances in Applied Mathematics, Modeling, and Computational Science

Part of the book series: Fields Institute Communications ((FIC,volume 66))

  • 2497 Accesses

Abstract

We present a collection of several natural questions about elliptic curves, mostly over finite fields, that have led to some interesting number theoretic questions and whose solutions require rather involved techniques from various area of number theory. Some of these questions are of intrinsic value for the theory of elliptic curves; they stem from their application to cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. M. Adleman, J. DeMarrais and M.-D. Huang, ‘A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields’, Lect. Notes in Comp. Sci., vol. 877, Springer, Berlin, 1994, pp. 28–40.

    Google Scholar 

  2. L. M. Adleman, C. Pomerance and R. S. Rumely, ‘On distinguishing prime numbers from composite numbers’, Ann. Math., 117 (1983), 173–206.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Agrawal, N. Kayal and N. Saxena, ‘PRIMES is in P’, Ann. Math., 160 (2004), 781–793.

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Ahmadi and R. Granger, ‘On isogeny classes of Edwards curves over finite fields’, J. Number Theory, 132 (2012), 1337–1358.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, CRC Press, Boca Raton, 2005.

    Google Scholar 

  6. S. Baier, ‘The Lang–Trotter conjecture on average’, J. Ramanujan Math. Soc., 22 (2007), 299–314.

    MathSciNet  MATH  Google Scholar 

  7. S. Baier, ‘A remark on the Lang–Trotter conjecture’, Proc. Conf. “New Directions in the Theory of Universal Zeta- and L-Functions”, Würzburg, Oct. 2008, Ber. Math., Shaker Verlag, Aachen, 2009, pp. 11–18.

    Google Scholar 

  8. S. Baier and N. Jones, ‘A refined version of the Lang–Trotter conjecture’, Int. Math. Res. Not., 3 (2009), 433–461.

    MathSciNet  Google Scholar 

  9. S. Baier and L. Zhao, ‘Bombieri–Vinogradov type theorems for sparse sets of moduli’, Acta Arith., 125 (2006), 187–201.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Baier and L. Zhao, ‘An improvement for the large sieve for square moduli’, J. Number Theory, 128 (2008), 154–174.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Baier and L. Zhao, ‘On the low-lying zeros of Hasse–Weil L-functions for elliptic curves’, Adv. Math., 219 (2008), 952–985.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Baier and L. Zhao, ‘The Sato–Tate conjecture on average for small angles’, Trans. Am. Math. Soc., 361 (2009), 1811–1832.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Balasubramanian and N. Koblitz, ‘The improbability that an elliptic curve has subexponential discrete log problem under the Menezes–Okamoto–Vanstone algorithm’, J. Cryptology, 11 (1998), 141–145.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Balog, ‘The prime k-tuplets conjecture on average’, Analytic Number Theory, Progress in Mathematics, vol. 85, Birkhäuser, Boston, 1990, pp. 47–75.

    Chapter  Google Scholar 

  15. A. Balog, A. Cojocaru and C. David, ‘Average twin prime conjecture for elliptic curves’, Am. J. Math., 133 (2011), 1179–1229.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. C. Baker, ‘Primes in arithmetic progressions to spaced moduli’, Acta Arith., 153 (2012), 133–159.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. D. Banks, F. Pappalardi and I. E. Shparlinski, ‘On group structures realized by elliptic curves over arbitrary finite fields’, Exp. Math., 21 (2012), 11–25.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. D. Banks and I. E. Shparlinski, ‘Sato–Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height’, Israel J. Math., 173 (2009), 253–277.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. T. Bateman and R. A. Horn, ‘A heuristic asymptotic formula concerning the distribution of prime numbers’, Math. Comput., 16 (1962), 363–367.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Bentahar, ‘The equivalence between the DHP and DLP for elliptic curves used in practical applications, revisited’, Lect. Notes in Comp. Sci., vol. 3796, Springer, Berlin, 2005, pp. 376–391.

    Google Scholar 

  21. S. R. Blackburn, A. Ostafe and I. E. Shparlinski, ‘On the distribution of the subset sum pseudorandom number generator on elliptic curves’, Unif. Distrib. Theory, 6 (2011), 127–142.

    MathSciNet  MATH  Google Scholar 

  22. I. Blake, G. Seroussi and N. Smart, Elliptic Curves in Cryptography, London Math. Soc., Lecture Note Series, vol. 265, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  23. I. Blake, G. Seroussi and N. Smart, Advances in Elliptic Curves in Cryptography, London Math. Soc., Lecture Note Series, vol. 317, Cambridge University Press, Cambridge, 2005.

    Book  Google Scholar 

  24. E. Bombieri, ‘On exponential sums in finite fields’, Am. J. Math., 88 (1966), 71–105.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Brumer, ‘The average rank of elliptic curves I’, Invent. Math., 109 (1992), 445–472.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Castryck, A. Folsom, H. Hubrechts and A. V. Sutherland, ‘The probability that the number of points on the Jacobian of a genus 2 curve is prime’, Proc. Lond. Math. Soc., 104 (2012), 1235–1270.

    Article  MATH  Google Scholar 

  27. W. Castryck and H. Hubrechts, ‘The distribution of the number of points modulo an integer on elliptic curves over finite fields’, Preprint, 2009 (available from http://arxiv.org/abs/0902.4332 ).

  28. M.-C. Chang, J. Cilleruelo, M. Z. Garaev, J. Hernandez, I. E. Shparlinski and A. Zumalacárregui, ‘Points on curves in small boxes en applications’, Preprint, 2011 (available from http://arxiv.org/abs/1111.1543 ).

  29. O. Chevassut, P.-A. Fouque, P. Gaudry and D. Pointcheval, ‘The twist-AUgmented technique for key exchange’, Lect. Notes in Comp. Sci., vol. 3958, Springer, Berlin, 2006, pp. 410–426.

    Google Scholar 

  30. J. Cilleruelo and M. Z. Garaev, ‘Concentration of points on two and three dimensional modular hyperbolas and applications’, Geom. Funct. Anal., 21 (2011), 892–904.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Cilleruelo, M. Z. Garaev, A. Ostafe and I. E. Shparlinski, ‘On the concentration of points of polynomial maps and applications’, Math. Z. (to appear).

    Google Scholar 

  32. J. Cilleruelo, I. E. Shparlinski and A. Zumalacárregui, ‘Isomorphism classes of elliptic curves over a finite field in some thin families’, Math. Res. Lett., 19 (2012), 335–343.

    Google Scholar 

  33. A. Cojocaru, ‘Questions about the reductions modulo primes of an elliptic curve’, Proc. 7th Meeting of the Canadian Number Theory Association (Montreal, 2002), CRM Proceedings and Lecture Notes, vol. 36, Am. Math. Soc., Providence, 2004, pp. 61–79.

    Google Scholar 

  34. A. Cojocaru, ‘On the cyclicity of the group of \(\mathbb{F}_{p}\)-rational points of non-CM elliptic curves’, J. Number Theory, 96 (2002), 335–350.

    MathSciNet  MATH  Google Scholar 

  35. A. Cojocaru, ‘Cyclicity of CM elliptic curves modulo p’, Trans. Am. Math. Soc., 355 (2003), 2651–2662.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Cojocaru, ‘Reductions of an elliptic curve with almost prime orders’, Acta Arith., 119 (2005), 265–289.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. C. Cojocaru and C. David, ‘Frobenius fields for elliptic curves’, Am. J. Math., 130 (2008), 1535–1560.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Cojocaru and W. Duke, ‘Reductions of an elliptic curve and their Tate–Shafarevich groups’, Math. Ann., 329 (2004), 513–534.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Cojocaru, É. Fouvry and M. R. Murty, ‘The square sieve and the Lang–Trotter conjecture’, Canadian J. Math., 57 (2005), 1155–1177.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Cojocaru and C. Hall, ‘Uniform results for Serre’s theorem for elliptic curves’, Int.. Math. Res. Not., 2005 (2005), 3065–3080.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. C. Cojocaru, F. Luca and I. E. Shparlinski, ‘Pseudoprime reductions of elliptic curves’, Math. Proc. Cambridge Philos. Soc., 146 (2009), 513–522.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Cojocaru and M. R. Murty, ‘Cyclicity of elliptic curves modulo p and elliptic curve analogues of Linnik’s problem’, Math. Ann., 330 (2004), 601–625.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Cojocaru and I. E. Shparlinski, ‘Distribution of Farey fractions in residue’, Proc. Am. Math. Soc., 136 (2008), 1977–1986.

    MathSciNet  Google Scholar 

  44. A. C. Cojocaru and I. E. Shparlinski, ‘On the embedding degree of reductions of an elliptic curve’, Inf. Proc. Lett., 109 (2009), 652–654.

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Corvaja and U. Zannier, ‘A lower bound for the height of a rational function at S-unit points’, Monatsh. Math., 144 (2005), 203–224.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, New York, 2004.

    Google Scholar 

  47. P. Cutter, A. Granville and T. J. Tucker, ‘The number of fields generated by the square root of values of a given polynomial’, Can. Math. Bull., 46 (2003), 71–79.

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Darmon, ‘Heegner points and elliptic curves of large rank over function fields’, Heegner Points and Rankin L-Series, Math. Sci. Res. Inst. Publ., vol. 49, Cambridge University Press, Cambridge, 2004, pp. 317–322.

    Chapter  Google Scholar 

  49. C. David and J. Jiménez Urroz, ‘Square-free discriminants of Frobenius rings’, Int. J. Number Theory, 6 (2010), 1391–1412.

    Article  MathSciNet  MATH  Google Scholar 

  50. C. David and E. Smith, ‘Elliptic curves with a given number of points over finite fields’, Compos. Math. (to appear).

    Google Scholar 

  51. C. David and E. Smith, ‘A Cohen–Lenstra phenomenon for elliptic curves’, Preprint, 2012 (available from http://arxiv.org/abs/1206.1585 ).

  52. C. David and J. Wu, ‘Pseudoprime reductions of elliptic curves’, Can. J. Math., 64 (2012), 81–101.

    Article  MathSciNet  MATH  Google Scholar 

  53. C. David and J. Wu, ‘Almost-prime orders of elliptic curves over finite fields’, Forum Math., 24 (2012), 99–120.

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Diem, ‘The GHS Attack in odd characteristic’, J. Ramanujan Math. Soc., 18 (2003), 1–32.

    MathSciNet  MATH  Google Scholar 

  55. C. Diem, ‘On the discrete logarithm problem in elliptic curves’, Compos. Math., 147 (2011), 75–104.

    Article  MathSciNet  MATH  Google Scholar 

  56. C. Diem, ‘On the discrete logarithm problem in elliptic curves’, Preprint, 2011.

    Google Scholar 

  57. W. Duke, ‘Almost all reductions modulo p of an elliptic curve have a large exponent’, C. R. Math., 337 (2003), 689–692.

    MathSciNet  MATH  Google Scholar 

  58. H. M. Edwards, ‘A normal form for elliptic curves’, Bull. Am. Math. Soc., 44 (2007), 393–422.

    Article  MATH  Google Scholar 

  59. J.-H. Evertse, ‘An improvement of the quantitative subspace theorem’, Compos. Math., 101 (1996), 225–311.

    MathSciNet  MATH  Google Scholar 

  60. J. S. Ellenberg and A. Venkatesh, ‘Reflection principles and bounds for class group torsion’, Int. Math. Res. Not., 2007 (2007), 1–18. Article ID rnm002

    MathSciNet  Google Scholar 

  61. J.-H. Evertse and H. P. Schlickewei, ‘A quantitative version of the absolute subspace theorem’, J. Reine Angew. Math., 548 (2002), 21–127.

    MathSciNet  MATH  Google Scholar 

  62. R. R. Farashahi, ‘On the number of distinct Legendre, Jacobi, Hessian and Edwards curves’, Preprint, 2011 (available from http://arxiv.org/abs/1112.5714 ).

  63. R. R. Farashahi, D. Moody and H. Wu, ‘Isomorphism classes of Edwards curves over finite fields’, Finite Fields Their Appl., 18 (2012), 597–612.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. R. Farashahi and I. E. Shparlinski, ‘On the number of distinct elliptic curves in some families’, Designs Codes Cryptogr., 54 (2010), 83–99.

    Article  MathSciNet  MATH  Google Scholar 

  65. R. R. Farashahi and I. E. Shparlinski, ‘On group structures realized by elliptic curves over a fixed finite field’, Exp. Math., 21 (2012), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  66. R. R. Farashahi and I. E. Shparlinski, ‘Pseudorandom bits from points on elliptic curves’, IEEE Trans. Inf. Theory, 58 (2012), 1242–1247.

    Article  MathSciNet  Google Scholar 

  67. R. R. Farashahi, P.-A. Fouque, I. E. Shparlinski, M. Tibouchi and J. F. Voloch, ‘Indifferentiable deterministic hashing to elliptic and hyperelliptic curves’, Math. Comput. (to appear).

    Google Scholar 

  68. R. R. Farashahi, I. E. Shparlinski and J. F. Voloch, ‘On hashing into elliptic curves’, J. Math. Cryptol., 3 (2009), 353–360.

    Article  MathSciNet  MATH  Google Scholar 

  69. K. Ford and I. E. Shparlinski, ‘On finite fields with Jacobians of small exponent’, Int. J. Number Theory, 4 (2008), 819–826.

    Article  MathSciNet  MATH  Google Scholar 

  70. P.-A. Fouque and M. Tibouchi, ‘Estimating the size of the image of deterministic hash functions to elliptic curves’, Lect. Notes in Comp. Sci., vol. 6212, Springer, Berlin, 2010, pp. 81–91.

    Google Scholar 

  71. É. Fouvry, ‘On the size of the fundamental solution of Pell equation’, Preprint, 2011.

    Google Scholar 

  72. É. Fouvry and M. R. Murty, ‘On the distribution of supersingular primes’, Can. J. Math., 48 (1996), 81–104.

    Article  MathSciNet  MATH  Google Scholar 

  73. D. Freeman, M. Scott and E. Teske, ‘A taxonomy of pairing-friendly elliptic curves’, J. Cryptol., 23 (2010), 224–280.

    Article  MathSciNet  MATH  Google Scholar 

  74. T. Freiberg and P. Kurlberg, ‘On the average exponent of elliptic curves modulo p’, Preprint, 2012 (available from http://arxiv.org/abs/1203.4382 ).

  75. J. B. Friedlander and H. Iwaniec, ‘Square-free values of quadratic polynomials’, Proc. Edinburgh Math. Soc., 53 (2010), 385–392.

    Article  MathSciNet  MATH  Google Scholar 

  76. J. B. Friedlander, C. Pomerance and I. E. Shparlinski, ‘Finding the group structure of elliptic curves over finite fields’, Bull. Aust. Math. Soc., 72 (2005), 251–263.

    Article  MathSciNet  MATH  Google Scholar 

  77. J. B. Friedlander and I. Shparlinski, ‘Elliptic twin prime conjecture’, Lect. Notes in Comp. Sci., vol. 5557, Springer, Berlin, 2009, pp. 77–81.

    Google Scholar 

  78. S. D. Galbraith and J. McKee, ‘The probability that the number of points on an elliptic curve over a finite field is prime’, J. Lond. Math. Soc., 62 (2000), 671–684.

    Article  MathSciNet  MATH  Google Scholar 

  79. P. Gaudry, F. Hess, and N. Smart, ‘Constructive and destructive facets of Weil descent’, J. Cryptol., 15 (2002), 19–46.

    Article  MathSciNet  Google Scholar 

  80. D. R. Heath-Brown, ‘The average analytic rank of elliptic curves’, Duke Math. J., 122 (2004), 591–623.

    Article  MathSciNet  MATH  Google Scholar 

  81. H. A. Helfgott and A. Venkatesh, ‘Integral points on elliptic curves and 3-torsion in class groups’, J. Am. Math. Soc., 19 (2006), 527–550.

    Article  MathSciNet  MATH  Google Scholar 

  82. F. Hess, ‘Computing relations in divisor class groups of algebraic curves over finite fields’, Preprint, 2005.

    Google Scholar 

  83. E. W. Howe, ‘On the group orders of elliptic curves over finite fields’, Compos. Math., 85 (1993), 229–247.

    MathSciNet  MATH  Google Scholar 

  84. A. Islam, ‘Products of three pairwise coprime integers in short intervals’, LMS J. Comput. Math., 15 (2012) 59–70.

    Article  MathSciNet  Google Scholar 

  85. H. Iwaniec and E. Kowalski, Analytic Number Theory, Am. Math. Soc., Providence, 2004.

    MATH  Google Scholar 

  86. D. Jao, D. Jetchev and R. Venkatesan, ‘On the bits of the elliptic curve Diffie–Hellman secret keys’, Lect. Notes in Comp. Sci., vol. 4859, Springer, Berlin, 2007, pp. 33–47.

    Google Scholar 

  87. J. Jiménez Urroz, ‘Almost prime orders of CM elliptic curves modulo p’, Lect. Notes in Comp. Sci., vol. 5011, Springer, Berlin, 2008, pp. 74–87.

    Google Scholar 

  88. J. Jiménez Urroz, F. Luca and I. E. Shparlinski, ‘On the number of isogeny classes of pairing-friendly elliptic curves and statistics of MNT curves’, Math. Comput., 81 (2012), 1093–1110.

    Article  MATH  Google Scholar 

  89. N. Jones, ‘Averages of elliptic curve constants’, Math. Ann., 345 (2009), 685–710.

    Article  MathSciNet  MATH  Google Scholar 

  90. N. Jones, ‘Almost all elliptic curves are Serre curves’, Trans. Am. Math. Soc., 362 (2010), 1547–1570.

    Article  MATH  Google Scholar 

  91. K. Karabina and E. Teske, ‘On prime-order elliptic curves with embedding degrees k=3, 4 and 6’, Lect. Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 102–117.

    Google Scholar 

  92. S. Kim, ‘On the average exponent of CM elliptic curves modulo p’, Preprint , 2012 (available from http://arxiv.org/abs/1207.6652 ).

  93. N. Koblitz, ‘Elliptic curve cryptosystems’, Math. Comput., 48 (1987), 203–209.

    Article  MathSciNet  MATH  Google Scholar 

  94. N. Koblitz, ‘Primality of the number of points on an elliptic curve over a finite field’, Pacific J. Math., 131 (1988), 157–166.

    MathSciNet  MATH  Google Scholar 

  95. N. Koblitz, ‘Elliptic curve implementation of zero-knowledge blobs’, J. Cryptol., 4 (1991), 207–213.

    Article  MathSciNet  MATH  Google Scholar 

  96. N. Koblitz, ‘Almost primality of group orders of elliptic curves defined over small finite fields’, Exp. Math., 10 (2001), 553–558.

    Article  MathSciNet  MATH  Google Scholar 

  97. N. Koblitz, A. Menezes and I. E. Shparlinski, ‘Discrete logarithms, Diffie–Hellman, and reductions’, Vietnam J. Math., 39 (2011), 267–285.

    MathSciNet  MATH  Google Scholar 

  98. D. R. Kohel and I. E. Shparlinski, ‘Exponential sums and group generators for elliptic curves over finite fields’, Lect. Notes in Comp. Sci., vol. 1838, Springer, Berlin, 2000, pp. 395–404.

    Google Scholar 

  99. J. C. Lagarias, H. L. Montgomery and A. M. Odlyzko, ‘A bound for the least prime ideal in the Chebotarev density theorem’, Invent. Math., 54 (1979), 271–296.

    Article  MathSciNet  MATH  Google Scholar 

  100. S. Lang, Elliptic Curves: Diophantine Analysis, Springer, Berlin, 1978.

    MATH  Google Scholar 

  101. H. W. Lenstra, ‘Factoring integers with elliptic curves’, Ann. Math., 126 (1987), 649–673.

    Article  MathSciNet  MATH  Google Scholar 

  102. H. W. Lenstra, ‘Solving the Pell equation’, Not. Am. Math. Soc., 49 (2002), 182–192.

    MathSciNet  MATH  Google Scholar 

  103. H. W. Lenstra, J. Pila, and C. Pomerance, ‘A hyperelliptic smoothness test. I’, Phil. Trans. R. Soc. Lond. (A), 345 (1993), 397–408.

    Article  MathSciNet  MATH  Google Scholar 

  104. H. W. Lenstra, Jr., J. Pila, and C. Pomerance, ‘A hyperelliptic smoothness test. II’, Proc. Lond. Math. Soc., 84 (2002), 105–146.

    Article  MathSciNet  MATH  Google Scholar 

  105. F. Luca, J. McKee and I. E. Shparlinski, ‘Small exponent point groups on elliptic curves’, J. Théor. Nr. Bordx., 17 (2005), 859–870.

    MATH  Google Scholar 

  106. F. Luca, D. J. Mireles and I. E. Shparlinski, ‘MOV attack in various subgroups on elliptic curves’, Illinois J. Math., 48 (2004), 1041–1052.

    MathSciNet  MATH  Google Scholar 

  107. F. Luca and I. E. Shparlinski, ‘On the exponent of the group of points on elliptic curves in extension fields’, Int. Math. Res. Not., 2005 (2005), 1391–1409.

    Article  MathSciNet  MATH  Google Scholar 

  108. F. Luca and I. E. Shparlinski, ‘Discriminants of complex multiplication fields of elliptic curves over finite fields’, Can. Math. Bull., 50 (2007), 409–417.

    Article  MathSciNet  MATH  Google Scholar 

  109. F. Luca and I. E. Shparlinski, ‘Elliptic curves with low embedding degree’, J. Cryptol., 19 (2006), 553–562.

    Article  MathSciNet  MATH  Google Scholar 

  110. F. Luca and I. E. Shparlinski, ‘On finite fields for pairing based cryptography’, Adv. Math. Commun., 1 (2007), 281–286.

    Article  MathSciNet  MATH  Google Scholar 

  111. F. Luca and I. E. Shparlinski, ‘On the counting function of elliptic Carmichael numbers’, Canad. Math. Bull. (to appear).

    Google Scholar 

  112. C. Magagna, ‘A lower bound for the r-order of a matrix modulo N’, Monats. Math., 153 (2008), 59–81.

    Article  MathSciNet  MATH  Google Scholar 

  113. G. Martin, P. Pollack and E. Smith, ‘Averages of the number of points on elliptic curves ’, Preprint , 2012 (available from http://arxiv.org/abs/1208.0919 ).

  114. K. Matomäki, ‘Large differences between consecutive primes’, Quart. J. Math., 58 (2007), 489–518.

    Article  MATH  Google Scholar 

  115. K. Matomäki, ‘A note on primes of the form p=aq 2+1’, Acta Arith., 137 (2009), 133–137.

    Article  MathSciNet  MATH  Google Scholar 

  116. U. M. Maurer, ‘On the oracle complexity of factoring integers’, Comput. Complex., 5 (1996), 237–247.

    Article  Google Scholar 

  117. J. McKee, ‘Subtleties in the distribution of the numbers of points on elliptic curves over a finite prime field’, J. Lond. Math. Soc., 59 (1999), 448–460.

    Article  MathSciNet  Google Scholar 

  118. A. Menezes, T. Okamoto and S. A. Vanstone, ‘Reducing elliptic curve logarithms to logarithms in a finite field’, IEEE Trans. Inform. Theory, 39 (1993), 1639–1646.

    Article  MathSciNet  MATH  Google Scholar 

  119. L. Merel, ‘Bornes pour la torsion des courbes elliptiques sur les corps de nombres’, Invent. Math., 124 (1996), 437–449.

    Article  MathSciNet  MATH  Google Scholar 

  120. V. S. Miller, ‘Uses of elliptic curves in cryptography’, Lect. Notes in Comp. Sci., vol. 218, Springer, Berlin, 1986, pp. 417–426.

    Google Scholar 

  121. V. S. Miller, ‘The Weil pairing, and its efficient calculation’, J. Cryptol., 17 (2004), 235–261.

    Article  MATH  Google Scholar 

  122. A. Miyaji, M. Nakabayashi and S. Takano, ‘New explicit conditions of elliptic curve traces for FR-reduction’, IEICE Trans. Fundam., E84-A (2001), 1234–1243.

    Google Scholar 

  123. P. Moree and P. Solé, ‘Around Pelikán’s conjecture on very odd sequences’, Manuscr. Math., 117 (2005), 219–238.

    Article  MATH  Google Scholar 

  124. A. Muzereau, N. P. Smart and F. Vercauteren, ‘The equivalence between the DHP and DLP for elliptic curves used in practical applications’, LMS J. Comput. Math., 7 (2004) 50–72.

    MathSciNet  MATH  Google Scholar 

  125. F. Pappalardi, ‘On the exponent of the group of points of an elliptic curve over a finite field’, Proc. Am. Math. Soc., 139 (2011), 2337–2341.

    Article  MathSciNet  MATH  Google Scholar 

  126. C. Pomerance and I. E. Shparlinski, ‘Rank statistics for a family of elliptic curves over a function field’, Pure Appl. Math. Quart., 6 (2010), 21–40.

    MathSciNet  MATH  Google Scholar 

  127. A. J. van der Poorten and H. P. Schlickewei, ‘Zeros of recurrence sequences’, Bull. Aust. Math. Soc., 44 (1991), 215–223.

    Article  MATH  Google Scholar 

  128. H.-G. Rück, ‘A note on elliptic curves over finite fields’, Math. Comput., 49 (1987), 301–304.

    MATH  Google Scholar 

  129. R. Schoof, ‘Elliptic curves over finite fields and the computation of square roots mod p’, Math. Comput., 44 (1985), 483–494.

    MathSciNet  MATH  Google Scholar 

  130. R. Schoof, ‘The exponents of the group of points on the reduction of an elliptic curve’, Arithmetic Algebraic Geometry, Progr. Math., vol. 89, Birkhäuser, Boston, 1991, pp. 325–335.

    Chapter  Google Scholar 

  131. V. Shoup, ‘Searching for primitive roots in finite fields’, Math. Comput., 58 (1992), 369–380.

    Article  MathSciNet  MATH  Google Scholar 

  132. I. Shparlinski, ‘On primitive elements in finite fields and on elliptic curves’, Mat. Sb., 181 (1990), 1196–1206 (in Russian).

    Google Scholar 

  133. I. E. Shparlinski, ‘Orders of points on elliptic curves’, Affine Algebraic Geometry, Am. Math. Soc., Providence, 2005, pp. 245–252.

    Chapter  Google Scholar 

  134. I. E. Shparlinski, ‘Pseudorandom number generators from elliptic curves’, Recent Trends in Cryptography, Contemp. Math., vol. 477, Am. Math. Soc., Providence, 2009, pp. 121–141.

    Chapter  Google Scholar 

  135. I. E. Shparlinski, ‘Exponents of modular reductions of families of elliptic curves’, Rev. Unión Mat. Argent., 50 (2009), 69–74.

    MathSciNet  MATH  Google Scholar 

  136. I. E. Shparlinski, ‘Tate–Shafarevich groups and Frobenius fields of reductions of elliptic curves’, Quart. J. Math., 61 (2010), 255–263.

    Article  MathSciNet  MATH  Google Scholar 

  137. I. E. Shparlinski, ‘On the Sato–Tate conjecture on average for some families of elliptic curves’, Forum Math. (to appear).

    Google Scholar 

  138. I. E. Shparlinski, ‘On the Lang–Trotter and Sato–Tate conjectures on average for polynomial families of elliptic curves’, Preprint, 2012 (available from http://arxiv.org/abs/1203.6500 ).

  139. I. E. Shparlinski and A. V. Sutantyo, ‘Distribution of elliptic twin primes in isogeny and isomorphism classes’, Preprint, 2012.

    Google Scholar 

  140. I. E. Shparlinski and A. V. Sutherland, ‘On the distribution of Atkin and Elkies primes’, Preprint, 2011 (available from http://arxiv.org/abs/1112.3390 ).

  141. I. E. Shparlinski and F. Voloch, ‘Generators of elliptic curves over finite fields’, Preprint, 2011.

    Google Scholar 

  142. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, Berlin, 1995.

    Google Scholar 

  143. K. Soundararajan, ‘Smooth numbers in short intervals’, Preprint, 2010 (available from http://arxiv.org/abs/1009.1591 ).

  144. M. A. Tsfasman and S. G. Vlăduţ, Algebraic-Geometric Codes, Kluwer Academic, Dordrecht, 1991.

    Book  MATH  Google Scholar 

  145. D. Ulmer, ‘Elliptic curves with large rank over function fields’, Ann. Math., 155 (2002), 295–315.

    Article  MathSciNet  MATH  Google Scholar 

  146. S. G. Vlăduţ, ‘Cyclicity statistics for elliptic curves over finite fields’, Finite Fields Their Appl., 5 (1999), 13–25.

    Article  MATH  Google Scholar 

  147. S. G. Vlăduţ, ‘On the cyclicity of elliptic curves over finite field extensions’, Finite Fields Their Appl., 5 (1999), 354–363.

    Article  MATH  Google Scholar 

  148. J. F. Voloch, ‘A note on elliptic curves over finite fields’, Bull. Soc. Math. Fr., 116 (1988), 455–458.

    MathSciNet  MATH  Google Scholar 

  149. A. Weng, ‘On group orders of rational points of elliptic curves’, Quaest. Math., 25 (2002), 513–525.

    Article  MathSciNet  MATH  Google Scholar 

  150. J. Wu, ‘The average exponent of elliptic curves modulo p’, Preprint, 2012 (available from http://arxiv.org/abs/1206.5928 ).

  151. M. Young, ‘Low-lying zeros of families of elliptic curves’, J. Am. Math. Soc., 19 (2006), 205–250.

    Article  MATH  Google Scholar 

  152. D. Zywina, ‘A refinement of Koblitz’s conjecture’, Int. J. Number Theory, 7 (2011), 739–769.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Shparlinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shparlinski, I.E. (2013). Elliptic Curves over Finite Fields: Number Theoretic and Cryptographic Aspects. In: Melnik, R., Kotsireas, I. (eds) Advances in Applied Mathematics, Modeling, and Computational Science. Fields Institute Communications, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5389-5_4

Download citation

Publish with us

Policies and ethics