Skip to main content

Innate Immune Responses During Infection with Yersinia pestis

  • Conference paper
  • First Online:
  • 1219 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 954))

Abstract

Yersinia pestis, the etiologic agent of plague, is one of the deadliest pathogens in the modern world. Y. pestis achieves its virulence in a biphasic manner promoting anti-inflammatory responses during early stage of infection and inducing pro-inflammatory responses during late disease. Multiple host signaling pathways are involved in combating this highly pathogenic bacterium. To understand the molecular mechanisms that are disrupted by Y. pestis during infection, we have been studying major pathways of activation of innate and adaptive immunity induced by toll-like receptor (TLR) and non-TLR signaling pathways, resulting in activation of NFκB or interferons. We found a central role for inflammatory mediators signal transducer and activator of transcription 1 and interferon response factor 3 but not NFκB or adaptive immune cells in mediating host defense against infection. Together, the data reveal delicate intricacies between proliferation of the pathogen within the host and involvement of multiple inflammatory pathways during Y. pestis infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Auerbuch V, Golenbock DT, Isberg RR (2009) Innate immune recognition of Yersinia pseudotuberculosis type III secretion. PLoS Pathog 5(12):e1000686. doi: 10.1371/journal.ppat.1000686

    Article  PubMed  Google Scholar 

  • Carty M, Goodbody R, Schroder M et al (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent toll-like receptor signaling. Nat Immunol 7:1074–1081. doi: ni1382 [pii] 10.1038/ni1382

    Article  PubMed  CAS  Google Scholar 

  • Cornelis GR (2002) The Yersinia Ysc-Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3:742–752. doi: 10.1038/nrm932 nrm932 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Rowe DC, Barnes BJ et al (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198:1043–1055. doi: 10.1084/jem.20031023 jem.20031023 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Hiscott J (2007) Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 282:15325–15329. doi: R700002200 [pii] 10.1074/jbc.R700002200

    Article  PubMed  CAS  Google Scholar 

  • Kenny EF, O’Neill LA (2008) Signalling adaptors used by toll-like receptors: an update. Cytokine 43:342–349. doi: S1043-4666(08)00222-6 [pii] 10.1016/j.cyto.2008.07.010

    Article  PubMed  CAS  Google Scholar 

  • Lathem WW, Crosby SD, Miller VL, Goldman WE (2005) Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A 102:17786–17791. doi: 0506840102 [pii] 10.1073/pnas.0506840102

    Article  PubMed  CAS  Google Scholar 

  • Lee-Lewis H, Anderson DM (2010) Absence of inflammation and pneumonia during infection with nonpigmented Yersinia pestis reveals a new role for the pgm locus in pathogenesis. Infect Immun 78:220–230. doi: IAI.00559-09 [pii] 10.1128/IAI.00559-09

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Masic A, Liu Q, Zhou Y (2011) Regulation of influenza A virus induced CXCL-10 gene expression requires PI3K/Akt pathway and IRF3 transcription factor. Mol Immunol 48:1417–1423. doi: S0161-5890(11)00111-8 [pii] 10.1016/j.molimm.2011.03.017

    Article  PubMed  CAS  Google Scholar 

  • Monack DM, Mecsas J, Bouley D, Falkow S (1998) Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J Exp Med 188:2127–2137

    Article  PubMed  CAS  Google Scholar 

  • Montminy SW, Khan N, McGrath S et al (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7:1066–1073. doi: ni1386 [pii] 10.1038/ni1386

    Article  PubMed  CAS  Google Scholar 

  • Nakajima R, Brubaker RR (1993) Association between virulence of Yersinia pestis and suppression of gamma interferon and tumor necrosis factor alpha. Infect Immun 61:23–31

    PubMed  CAS  Google Scholar 

  • Parent MA, Wilhelm LB, Kummer LW, Szaba FM, Mullarky IK, Smiley ST (2006) Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection. Infect Immun 74:3381–3386. doi: 74/6/3381 [pii] 10.1128/IAI.00185-06

    Article  PubMed  CAS  Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis-etiologic agent of plague. Clin Microbiol Rev 10:35–66

    PubMed  CAS  Google Scholar 

  • Purtha WE, Chachu KA, Virgin HW IV, Diamond MS (2008) Early B-cell activation after West Nile virus infection requires alpha/beta interferon but not antigen receptor signaling. J Virol 82:10964–10974. doi: JVI.01646-08 [pii] 10.1128/JVI.01646-08

    Article  PubMed  CAS  Google Scholar 

  • Rayamajhi M, Humann J, Kearney S et al (2010) Antagonistic crosstalk between type I and II interferons and increased host susceptibility to bacterial infections. Virulence 1:418–422. doi: 12787 [pii] 10.4161/viru.1.5.12787

    Article  PubMed  Google Scholar 

  • Ruckdeschel K, Roggenkamp A, Lafont V et al (1997) Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect Immun 65:4813–4821

    PubMed  CAS  Google Scholar 

  • Ruckdeschel K, Harb S, Roggenkamp A et al (1998) Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J Exp Med 187:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Suemori H, Hata N et al (2000) Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13:539–548. doi: S1074-7613(00)00053-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189. doi: 10.1189/jlb.0603252 jlb.0603252 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Sherry B (2009) Rotavirus and reovirus modulation of the interferon response. J Interferon Cytokine Res 29:559–567. doi: 10.1089/jir.2009.0072

    Article  PubMed  CAS  Google Scholar 

  • Sodeinde OA, Subrahmanyam YV, Stark K et al (1992) A surface protease and the invasive character of plague. Science 258:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Surgalla MJ, Beesley ED (1969) Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18:834–837

    PubMed  CAS  Google Scholar 

  • Szretter KJ, Samuel MA, Gilfillan S et al (2009) The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis. J Virol 83:9329–9338. doi: JVI.00836-09 [pii] 10.1128/JVI.00836-09

    Article  PubMed  CAS  Google Scholar 

  • Tsitoura E, Thomas J, Cuchet D et al (2009) Infection with herpes simplex type 1-based amplicon vectors results in an IRF3/7-dependent, TLR-independent activation of the innate antiviral response in primary human fibroblasts. J Gen Virol 90:2209–2220. doi: vir.0.012203-0 [pii] 10.1099/vir.0.012203-0

    Article  PubMed  CAS  Google Scholar 

  • Watters TM, Kenny EF, O’Neill LA (2007) Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411–419. doi: 7100095 [pii] 10.1038/sj.icb.7100095

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Bliska JB (2003) Role of toll-like receptor signaling in the apoptotic response of macrophages to Yersinia infection. Infect Immun 71:1513–1519

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Drs. Michael Diamond and Herbert Virgin IV for their generosity in providing the knockout mice. We are also grateful to members of our laboratory for assistance with the BSL3 experiments and helpful discussions. Histology services were provided by the Research Animal Diagnostic Laboratory (RADIL) at the University of Missouri. This work was supported by the NIH/NIAID Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (U54157160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah M. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Patel, A.A., Anderson, D.M. (2012). Innate Immune Responses During Infection with Yersinia pestis . In: de Almeida, A., Leal, N. (eds) Advances in Yersinia Research. Advances in Experimental Medicine and Biology, vol 954. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3561-7_19

Download citation

Publish with us

Policies and ethics