Skip to main content

Constructing Knowledge by Transformation, Diagrammatic Reasoning in Practice

  • Chapter
  • First Online:
  • 1158 Accesses

Abstract

The aim of this article is to present a certain view on the reading of mathematical texts. Using an example it will be shown that readings of mathematical texts may be codetermined by different readers’ transformations. As an example of such a kind of reading, a theorem from a nineteenth-century-geometry textbook is introduced. To comprehend the meaning of this geometry and to be able to follow all the arguments offered, the text and some proofs are transformed into a more up-to-date kind of geometry. This transformation can be characterized by a transfer of the author’s use of diagrams to the reader’s use of diagrams. In addition, this transfer of use can be supplemented occasionally by the use of an alternative set of diagrams. This means that the use of diagrams that are well known to the reader of a mathematical text may considerably support his/her construction of knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    On the use of textbooks in mathematics, see Rezat, 2010.

  2. 2.

    Max Simon (born in Kolberg in 1844, died in Strassburg in 1918), mathematics teacher and historian of mathematics, PhD 1867 by Weierstrass and Kummer.

  3. 3.

    To give an example of a sign we can think of a barometer as representamen, which gives some information about its object, the air pressure. A person recognizing a change of the air pressure can interpret this change. It is remarkable that the representamen itself can be called a sign. For more information see the previously cited literature.

References

  • Anderson, M., Sáenz-Ludlow, A., Zellweger, S., & Cifarelli, V. V. (Eds.). (2003). Educational perspectives on mathematics as semiosis: from thinking to interpreting to knowing. New York: Legas.

    Google Scholar 

  • Arzarello, F., Olivero, F., Domingo, D., & Robutti, O. (2002). A cognitive analyisis of dragging practices in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72.

    Google Scholar 

  • Bakker, A., & Hoffmann, M. H. G. (2005). Diagrammatic reasoning as the basis for developing concepts: A semiotic analysis of students’ learning about statistical distribution. Educational Studies in Mathematics, 60(3), 333–358.

    Article  Google Scholar 

  • Boehm, G. (1994). Die Wiederkehr der Bilder. In G. Boehm (Ed.), Was ist ein Bild? (pp. 11–38). München: Wilhelm Fink Verlag.

    Google Scholar 

  • Cobb, P., Yackel, E., & McLain, K. (Eds.). (2000). Symbolizing, Modeling and Instructional Design. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Coulmas, F. (2003). Writing systems. An introduction to their linguistic analysis. Cambridge UK: Cambridge University Press.

    Google Scholar 

  • Dörfler, W. (2006). Diagramme und Mathematikunterricht. Journal für Mathematik-Didaktik, 27(3/4), 200–219.

    Article  Google Scholar 

  • Freudenthal, H. (1973). Mathematik als paedagogische Aufgabe. Stuttgart: Klett.

    Google Scholar 

  • Goldin, G. (1998a). The pme working group on representations. Journal of Mathematical Behavior, 17(2), 283–299.

    Article  Google Scholar 

  • Goldin, G. (1998b). Representational systems, learning and problem solving in mathematics. Journal of Mathematical Behavior, 17(2), 137–165.

    Article  Google Scholar 

  • Goodman, N. (1976). Languages of art. An approach to a theory of symbols. Indianapolis: Hackett Publishing Company.

    Google Scholar 

  • Harris, R. (2001). Rethinking writing. London: Athlone Press.

    Google Scholar 

  • Heintz, B. (2000). Die Innenwelt der Mathematik. Wien: Springer.

    Book  Google Scholar 

  • Hoffmann, M. (Ed.). (2003). Mathematik verstehen. Semiotische Perspektiven. Hildesheim. Berlin: Franzbecker.

    Google Scholar 

  • Hoffmann, M. H. G. (2005). Erkenntnisentwicklung. Frankfurt am Main: Vittorio Klostermann.

    Google Scholar 

  • Hoffmann, M. H. G. (2006). What is a "semiotic perspective", and what could it be? Some comments on the contributions to this special issue. Educational Studies in Mathematics, 61, 279–291.

    Article  Google Scholar 

  • Kadunz, G. (2006). Schrift und Diagramm: Mittel beim Lernen von Mathematik. Journal für Didaktik der Mathematik, 27(3/4), 220–239.

    Article  Google Scholar 

  • Krämer, S. (2003). >Schriftbildlichkeit< oder: Über eine (fast) vergessene Dimension der Schrift. Bild, Schrift, Zahl. S. Krämer and H. Bredekamp (157–176). München: Wilhelm Fink.

    Google Scholar 

  • Latour, B. (1987). Science in Action: How to Follow Scientists and Engineers through Society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Mitchell, W. J. T. (1994). Picture theory. Chicago: The University of Chicago Press.

    Google Scholar 

  • Nöth, W. (2000). Handbuch der Semiotik (2 ed.). Stuttgart, Weimar: J.B. Metzler.

    Google Scholar 

  • Oliveri, G. (1997). Mathematics, a science of patterns? Synthese, 112, 379–402.

    Article  Google Scholar 

  • Peirce, C. S. (1998). The essential peirce = EP. Bloomington and Indianapolis: Indiana University Press.

    Google Scholar 

  • Presmeg, N. (2006). Semiotics and the “connections” standard: significance of semiotics for teacher of mathematics. Educational Studies in Mathematics, 61, 163–182.

    Article  Google Scholar 

  • Sáenz-Ludlow, A., & Presmeg, N. (2006). Guest editorial semiotic perspectives on learning mathematics and communicating mathematically. Educational Studies in Mathematics, 61, 1–10.

    Article  Google Scholar 

  • Schreiber, C. (2010). Semiotische Prozess-Karten—chatbasierte Inskriptionen in mathematischen Problemlöseprozesse. Münster: Waxmann.

    Google Scholar 

  • Seeger, F. (2000). Lernen mit grafischen Repräsentationen: Psychologische und semiotische Überlegungen. Semiotik, 22(1), 51–79.

    Google Scholar 

  • Simon, M. (1915). Analytische Geometrie der Ebene (3 ed.). Berlin, Leipzig: Goeschen.

    Google Scholar 

  • Stjernfelt, F. (2000). Diagrams as centerpiece of a peircian epistemoloy. Transactions of Charles S. Peirce Society, XXXVI(3), 357–384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Kadunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kadunz, G. (2014). Constructing Knowledge by Transformation, Diagrammatic Reasoning in Practice. In: Rezat, S., Hattermann, M., Peter-Koop, A. (eds) Transformation - A Fundamental Idea of Mathematics Education. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3489-4_7

Download citation

Publish with us

Policies and ethics