Skip to main content

The Role of Social Aspects of Teaching and Learning in Transforming Mathematical Activity: Tools, Tasks, Individuals and Learning Communities

  • Chapter
  • First Online:
Transformation - A Fundamental Idea of Mathematics Education

Abstract

The purpose of this chapter is to explore how the reflexive interaction between resources, especially digital technologies and mathematical tasks and the users of these resources can lead to different types of transformation. In this exploration, Strässer’s (2009) tetrahedral model for teaching and learning mathematics, which incorporates students, teachers, mathematical knowledge and resources, will be extended by considering the social aspects of coming to know and do mathematics. Research data collected from secondary mathematics classrooms will be used to illustrate how such transformations are played out in authentic classroom settings. Finally, selected types of small-group and whole-class social interactions, as they relate to Strässer (2009) model, will be theorised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.

    Article  Google Scholar 

  • Borba, M. C., & Villarreal, M. E. (2006). Humans-with-media and the reorganization of mathematical thinking: information and communication technologies, modeling, visualization, and experimentation. New York: Springer.

    Google Scholar 

  • Chevallard, Y. (1985/1991). La transposition didactique (2nd ed. 1991 incl. a “postface” and a reprint of the case study by Chevallard & Joshua on distance from Recherches en Didactique des Mathématiques 1982). Grenoble: Pensées sauvages.

    Google Scholar 

  • Cobb, P. (2007). Putting philosophy to work: Coping with multiple theoretical perspectives. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: a project of the national council of teachers of mathematics (pp. 3–38). Charlotte, NC: Information Age Pub.

    Google Scholar 

  • Drijvers, P., & Gravemeijer, K. (2005). Computer algebra as an instrument: Examples of algebraic schemas. In D. Guin, K. Ruthven & L. Trouche (Eds.), The didactical challenge of symbolic calculators: turning a computational device into a mathematical instrument (pp. 163–196). New York: Springer.

    Chapter  Google Scholar 

  • Drijvers, P., & Weigand, H. (2010). The role of handheld technology in the mathematics classroom. Zentralblatt för Didaktik der Mathematik, 42(7), 665–666.

    Article  Google Scholar 

  • Ferrara, F., Pratt, D., & Robutta, O. (2006). The role and uses of technologies for the teaching of algebra and calculus. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: past, present and future (pp. 237–273). Rotterdam: Sense Publishers.

    Google Scholar 

  • Galbraith, P., Goos, M., Renshaw, P., & Geiger, V. (2001). Integrating technology in mathematics learning: what some students say. In J. Bobis, B. Perry & M. Mitchelmore (Eds.), Numeracy and beyond. Proceedings of the twenty-fourth annual conference of the mathematics education research group of Australasia (MERGA-24). Sydney: MERGA.

    Google Scholar 

  • Galbraith, P., Renshaw, P., Goos, M., & Geiger, V. (1999). Technology, mathematics, and people: interactions in a community of practice. In J. Truran & K. Truran (Eds.), Making the difference. proceedings of twenty-second annual conference of the mathematics education research group of Australasia (MERGA-22) (pp. 223–230). Sydney: MERGA.

    Google Scholar 

  • Geiger, V. (2005). Master, servant, partner and extension of self: a finer grained view of this taxonomy. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce & A. Roche (Eds.), Building connections: Theory, research and practice. proceedings of the twenty-eighth annual conference of the mathematics education research group of Australasia (MERGA-28). Melbourne: MERGA.

    Google Scholar 

  • Geiger, V. (2006). More than tools: Mathematically enabled technologies as partner and collaborator. In C. P. Hoyles, J. Lagrange, L. Son & N. Sinclair (Eds.), The seventeenth study conference of the international commission on mathematical instruction (pp. 182–189). Hanoi: International Commisson for Mathematics Instruction.

    Google Scholar 

  • Geiger, V. (2009). Learning mathematics with technology from a social perspective: A study of secondary students’ individual and collaborative practices in a technologically rich mathematics classroom. (Unpublished doctoral dissertation, the University of Queensland). Australasian Digital Theses Program UQ:178520: http://espace.library.uq.edu.au/view/UQ:178520.

  • Geiger, V., Faragher, R., & Goos, M. (2010). CAS-enabled technologies as ‘agents provocateurs’ in teaching and learning mathematical modelling in secondary school classrooms. Mathematics Education Research Journal, 22(2), 48–68.

    Article  Google Scholar 

  • Goos, M., Galbraith, P., Renshaw, P., & Geiger, V. (2000). Reshaping teacher and student roles in technology-enriched classrooms. Mathematics Education Research Journal, 12(3), 303–320.

    Article  Google Scholar 

  • Goos, M., Galbraith, P., Renshaw, P., & Geiger, V. (2003). Perspectives on technology mediated learning in secondary school mathematics classrooms. The Journal of Mathematical Behavior, 22(1), 73–89.

    Article  Google Scholar 

  • Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199–218.

    Article  Google Scholar 

  • Guin, D., Ruthven, K., & Trouche, L. (2005). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.

    Book  Google Scholar 

  • Hoyles, C., & Lagrange, J.-B. (2010). Introduction. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology-rethinking the Terrain (Vol. 13, pp. 1–11). New York: Springer.

    Chapter  Google Scholar 

  • Hutchins, E. (1995). Cognition in the wild. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • Kieran, C., & Guzma’n, J. (2005). Five steps to zero: Students developing elementary number theory concepts when using calculators. In W. J. Masalski & P. C. Elliott (Eds.), Technology-supported mathematics learning environments (pp. 35–50). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.

    Article  Google Scholar 

  • Laborde, C., Kynigos, C., Hollebrands, K., & Straesser, R. (2006). Teaching and learning geometry with technology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: past, present and future (pp. 275–304). Rotterdam: Sense Publishers.

    Google Scholar 

  • Lesh, R., & English, L. (2005). Trends in the evolution of models & amp; modeling perspectives on mathematical learning and problem solving. Zentralblatt för Didaktik der Mathematik, 37(6), 487–489.

    Article  Google Scholar 

  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills: Sage Publications.

    Google Scholar 

  • Manouchehri, A. (2004). Using interactive algebra software to support a discourse community. The Journal of Mathematical Behavior, 23(1), 37–62.

    Article  Google Scholar 

  • Pea, R. (1985). Beyond Amplification: Using the computer to reorganize mental functioning. Educational Psychologist, 20(4), 167–182.

    Article  Google Scholar 

  • Pea, R. (1987). Cognitive technologies for mathematics education. In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 89–122). Hillsdale, N.J.: Lawrence Erlbaum Associates.

    Google Scholar 

  • Pea, R. (1993a). Learning scientific concepts through material and social activities: Conversational analysis meets conceptual change. Educational Psychologist, 28(3), 265–277.

    Article  Google Scholar 

  • Pea, R. (1993b). Practices of distributed intelligence and designs for education. In G. Salomon (Ed.), Distributed cognitions: psychological and educational considerations (pp. 47–87). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pierce, R., Ball, L., & Stacey, K. (2009). Is it worth using CAS for symbolic algebra manipulation in the middle secondary years? Some teacher’s views. International Journal of Science and Mathematics Education, 7(6), 1149–1172.

    Article  Google Scholar 

  • Rezat, S. (2006). A model for textbook use. In J. Novotna, H. Moraova, M. Kratka & N. Stehlikova (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education (Vol. 4, pp. 409–416). Prague: PME.

    Google Scholar 

  • Strässer, R. (2009). Instruments for learning and teaching mathematics an attempt to theorize about the role of textbooks, computers and other artefacts to teach and learn mathematics. In M. Tzekaki & H. Sakonidis (Eds.), Proceedings of the 33rd conference of the international group for the psychology of mathematics education (Vol. 1, pp. 67–81). Thessaloniki: PME.

    Google Scholar 

  • Trouche, L. (2003). From artifact to instrument: mathematics teaching mediated by symbolic calculators. Interacting with Computers, 15(6), 783–800.

    Article  Google Scholar 

  • Trouche, L. (2005). Instrumental genesis, individual and social aspects. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 197–230). New York: Springer.

    Chapter  Google Scholar 

  • Verillon, P., & Rabardel, P. (1995). Cognition and artifacts:A contribution to the study of thought in relation to instrumental activity. European Journal of Psychology of Education, 10, 77–103.

    Article  Google Scholar 

  • Wartofsky, M. W. (1979). Models. Representation and the scientific understanding (Vol. 129). Dordrecht: Reidel.

    Google Scholar 

  • Wertsch, J. (1985). Vygotsky and the social formation of mind. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vince Geiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Geiger, V. (2014). The Role of Social Aspects of Teaching and Learning in Transforming Mathematical Activity: Tools, Tasks, Individuals and Learning Communities. In: Rezat, S., Hattermann, M., Peter-Koop, A. (eds) Transformation - A Fundamental Idea of Mathematics Education. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3489-4_11

Download citation

Publish with us

Policies and ethics