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Abstract Improvement of parallel computing capability will greatly increase the
efficiency of high performance cloud computing. By combining the powerful scalar
processing on CPU with the efficient parallel processing on GPU, CPU-GPU
systems provide a hybrid computing environment that can be dynamically optimized
for cloud computing applications. One of the critical issues in CPU-GPU system
designs is the so called memory wall, which denotes the design complexity of
memory coherence, bandwidth, capacity, and power budget. The optimization of the
memory designs can not only improve the run-time performance but also enhance
the reliability of the CPU-GPU system. In this chapter, we will introduce the
mainstream and emerging memory hierarchy designs in CPU-GPU systems, discuss
the techniques that can optimize the data allocation and migration between CPU and
GPU for performance and power efficiency improvement, and present the challenges
and opportunities of CPU-GPU systems.

1 Introduction

The core of cloud computing requires to have capability of exascale computing to
process big data applications. General-purpose Programming on Graphics Process-
ing Unit (GPU) architectures [18, 33] have been introduced to process vertices and
fragments in parallel, which frequently occur in online data/transaction processing.
By leveraging the intensive computing capability of GPGPU and the functional
flexibility of Central Processing Unit (CPU), the hybrid CPU-GPGPU architectures
[28,37] have been proposed to satisfy the ever-increasing computing capacity of big
data applications.
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Data management and communication are two critical problems in hybrid
CPU-GPGPU computing system design and programming. The technology fusion
between CPU and GPGPU dramatically raises the complexity of data management
because of the different requirements on memory metrics in CPU and GPGPU as
well as the throughput discrepancy. Many memory designs have been proposed
to mitigate these issues and optimize the data allocation and migration between
CPUs and GPUs. The reliability and power consumption of the memory hierarchy
in CPU-GPGPU systems are also major considerations in these designs. All the
above problems will be discussed in this chapter.

The rest of the chapter is organized as follows. Section 2 presents CPU and
GPU hierarchies, and limitations of CPU and GPU. Section 3 provides an overview
of discrete CPU-GPU architecture, CPU-GPU communication, optimization and
scalability. Section 4 provides an overview of integrated CPU-GPU architecture,
memory hierarchy for CPU-GPU systems and design issues. Finally, Section 5
presents our conclusions.

2 Motivation for CPU-GPU Systems

2.1 CPU Memory Hierarchy

In computer systems, CPU is in charge of processing various applications. The
executions of instructions in pipelined CPU designs require low data access latency
to memory hierarchy. Figure 1 shows a typical memory hierarchy design [9], which
consists of cache, main memory and secondary storage. As the component closest to
the microprocessor, cache is usually implemented by static random-access memory

Fig. 1 The conventional
memory hierarchy
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(SRAM) to offer the fastest access time. However, the high power consumption
and large memory cell size limit the cache capacity, which is usually from tens KB
(L1 cache) to a few MB (L2 cache and beyond). The spatial locality of the cache
access ensures a high cache hit rate (e.g., higher than 90%) [9] to supply the data
for most of the accesses without referring to lower-level storage component. Main
memory, which is implemented by dynamic random-access memory (DRAM),
usually has a much larger capacity than cache but also a longer access latency.
Finally, the second storage system (e.g., hard disk drive (HDD)) offers the largest
capacity in the memory hierarchy, but also the longest access latency up to
milliseconds. Very recently, NAND flash technology is applied as the second storage
system (e.g., solid state drive (SSD) in embedded applications.

2.2 GPU Memory Hierarchy

A graphics processing unit (GPU) consists of an array of highly scalable multi-core
processors that were specially designed for accelerating the display output gener-
ation. Recently, GPU has been also applied in general-purpose parallel computing
applications due to its powerful data processing capability. A typical present-day
GPU is composed of multiple streaming multiprocessors (SM) which are hardware
multi-threaded and each SM contains eight or more streaming processors (SP). Such
a highly parallel architecture requires also high data transfer bandwidth.

Compute unified device architecture(CUDA) is a widely adopted parallel pro-
gramming model mainly designed for NVDIA GPUs. To provide high data through-
out required by multi-processors under general computing and visual display
applications, CUDA uses a memory subsystem distinct from CPU. The subsystem
consists of cache, share memory, constant memory, texture memory and global
memory. Similar to the scenario in CPU designs, cache is on the top of this memory
hierarchy and closest to the processors. Instead of building a large memory capacity
for hit rate improvement in CPU designs, GPU cache designs focus on promoting
the memory bandwidth for highly threaded applications. In GPU memory hierarchy,
below the cache, shared memory supports both read and write accesses to each
processor in the same SM. Due to requirements on data throughput, both cache and
shared memory are implemented by on-chip multi-bank SRAM. Constant memory,
texture memory and global memory reside at the lower levels of memory hierarchy.

Both constant memory and texture memory store read-only data and support
access from all GPU threads. In particular, constant memory has relatively short
access latency for simultaneous requests to the same word while texture memory is
designed to support the requests with strong spatial locality. Global memory is for
the data transfer between the GPU and the host applications. It is also accessible to
all threads of the GPU. In general, constant memory, texture memory, and global
memory all reside in the external memory. Therefore, the external memory has
to provide enough bandwidth for the multi-processors in the GPU and the data
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Fig. 2 IBM R© POWER7TM processor chip view (Adapted from Ware et al. [29])

migration between the host memory and the global memory to prevent performance
degradation. Usually, graphics double data rate (GDDR) memory is employed as
the external memory.

2.3 Limitations of CPU and GPU

The high performance of modern CPUs is due to the combination of many
technology advancements: high transistor density and performance, pipeline tech-
nology, superscalar execution, speculative execution, caching and so on. The
evolution of the compiler also greatly reduces the programming difficulty of the
modern CPU as the hardware details of micro-architecture is almost invisible to
the software developers. However, CPUs are mainly designed for a wide variety of
applications with a balanced response time to different tasks. Due to the complex
control logic, the integer and floating-point execution units only occupy a very small
fraction of the die area in a modern CPU, as shown in Fig. 2. It is no surprise
that CPU is relatively inefficient for data-intensive high performance computing
applications with high parallelism.

The multi-core structure and high memory bandwidth make GPUs ideal com-
puting platforms for graphic applications with a large degree of data parallelism.
Compared to CPUs, the smaller cache capacity and lower cache hit rate (i.e., lower
than 90% ) and longer memory access latency limit the performance of GPUs for
single-threaded applications. Nonetheless, the high tolerance of graphic applications
to memory access latency allow GPUs to trade single-thread performance for
parallel processing capability. The GPU performance is ultimately limited by the
percentage of the scalar section of the program [15].
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In modern CPU-GPU systems, CPUs mainly handle the dynamic workloads
with short sequences of computational operations and unpredictable control flow
while GPUs are mainly in charge of gaming, multimedia encoding and other
popular PC applications. Combining the computing flexibility of CPUs and the
parallel computing strength of GPUs, the CPU-GPU system has become one of
the popular architectures in both PC and enterprise markets. In the next section, we
will introduce two kinds of mainstream heterogeneous systems.

3 Discrete CPU-GPU Systems

3.1 Overview of Discrete CPU-GPU Architecture

The architecture of a typical discrete CPU-GPU system is shown in Fig. 3. GPU is
connected to a chipset, which is attached to CPU via a ×16 peripheral component
interconnect express (PCIe) link. Both CPU and GPU have their own memory
subsystems which are disjoint from each other. The data computing in the GPU
invokes data movement between the main memory of the host and the memory
of the GPU on the PCIe bus. In the existing program models such as CUDA,
the host-to-device data transfer is manually and explicitly managed. Since all the
data transfer between host and GPU is through the PCIe bus, additional timing and
control overhead costs are incurred. As a consequence, the PCI data transfer is often
the bottleneck of the GPU performance [2].

Fig. 3 CPU-GPU architecture
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3.2 CPU-GPU Communication and Optimization

If the CPU or GPU needs data outside their memories, the data must be explicitly
loaded from other memories into their own memories. The process of copying data
between these memories is called managing communication. There are two generic
types of data communication, cyclic communication and acyclic communication.
Because cyclic communication is often several orders of magnitude slower than
acyclic communication, transforming cyclic communication patterns to acyclic
patterns is of importance to computing system designs, and is called optimizing
communication. In CPU-GPU systems, copying data to GPU memory, generating a
GPU function, and copying the results back to CPU memory yield typical cyclic
communication patterns. Copying data to the GPU in the preheader, generating
multiple GPU functions, and copying the result back to CPU memory at the loop exit
lead to a typical acyclic communication pattern [10]. An effective communication
optimization can minimize the number of access states and prevent the accessing of
inconsistent data. However, the communication patterns between CPUs and GPUs
could be very complicated because of the mismatch of data rate, access patterns,
processing throughput, etc.

A fully automatic CPU-GPU communication management and optimization is
proposed in [10]. The proposed scheme consists of a run-time library and a set of
compiler transformations working together for the management and optimization of
the CPU-GPU communications. This scheme does not rely on the strength of the
static compile-time analysis or programmer-supplied annotations. The optimized
automatic GPU parallelization yields on average a 5.36× speedup of the overall
system over the best sequential CPU-only execution.

In [27], a CUDA-lite communication scheme translates low-performance, naive
CUDA functions into high performance code by coalescing and exploiting GPU
shared memory. For execution efficiency improvement, programmers need to
provide annotations describing certain properties of the data structures and code
regions designated for GPU execution. The CUDA-lite tool analyzes the code
with these annotations and determines if the memory bandwidth can be conserved
and the access latency can be reduced by utilizing any special memory types
and/or by massaging the memory access patterns. In [32], JCUDA uses the Java
type system to automatically transfer GPU function arguments between CPU and
GPU memories. An annotation is required to indicate whether each parameter is
live-in, live-out, or both. If Java implements multidimensional arrays as arrays of
references, JCUDA uses the type information to flatten these arrays to Fortran-
style multidimensional arrays. In [30], the Portland Group, Inc (PGI) Fortran and
C compiler provides a mode for semi-automatic parallelization of GPUs. The
PGI compiler cannot parallelize loops containing general pointer arithmetic, while
CPU-GPU Communication Manager (CGCM) preserves the semantics of pointer
arithmetic. Unlike CGCM, the PGI compiler does not automatically optimize the
communication across GPU function invocations.
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Acyclic communication can be achieved in the rare instances when dynamic
dependence information is reusable. In [24], program annotations are used to
prevent the undesired reuse of the dynamic dependence information. In [23],
a dynamic check on the relevant program state is adopted to determine if the
dependence information is reusable. However, the dynamic check is usually very
costly and if the check fails, the system goes back to cyclic communication by
default.

In [14], an automatic compiler is proposed to conduct the source-to-source trans-
lation from standard OpenMP applications to CUDA-based GPGPU applications.
The system automatically transfers the named regions between CPU and GPU using
two passes: The first pass copies all named annotated regions to the GPU for each
GPU function, and the second cleanup pass removes all the copies that are not live-
in. The two passes produce a communication pattern equivalent to an un-optimized
CGCM communication.

Recently, message passing interface (MPI) [17] has been incorporated in the
CUDA programming model to facilitate the data transfer via the PCIe bus, due to
its outstanding inter-node communication capacity. However, the duplicate buffers
introduced by the mixed MPI and CUDA programming model lead to the waste
of memory space and code complexity. Furthermore, the MPI library is not able
to support intra-node communication and the data movement between the host
and memory is required under the current mixed MPI-CUDA model. However,
such an approach results in longer latency and decreases bandwidth due to the
significant amount of message transfers. In [11], the authors propose an address-
aware MPI-GPU programming model to eliminate the redundant data copying
between intermediate buffers by adding support to the GPU memory buffer in
MPICH2 that is a open source of the MPI implementation. Asynchronous direct
memory access (DMA) mode is also adopted to further improve the data copying
throughput.

3.3 Power Efficiency Optimization

To satisfy the high data throughput requirements in video display applications and
high performance computing, GDDR memories are specialized for current CPU-
GPU systems. GDDR memories feature high working frequency and extended
bus width. However, the increase in working frequency significantly raises power
consumption and higher heat sinking cost. Although voltage and frequency scaling
techniques can reduce the power consumption to a certain degree, they may also
result in significant performance degradation. To improve the power efficiency of
CPU-GPU systems, Zhao et al. [35] present a design to integrate GPU processor,
GDDR-like graphic memories and their controllers in a single package. The data
throughput is dramatically improved by reducing the number of memory package
pins, without incurring any performance overheads. To further reduce power
consumption, a reconfigurable memory controller is designed to dynamically adjust
the bus width and frequency, based on the characteristics of different applications.
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3.4 Scalability

To maximize parallel computing performance, multiple GPUs may be integrated in
each core (or a node) in some CPU-GPU systems, such as Tianhe-1A, Tsubame,
and KIDS. However, such designs impose new challenges for system architects in
the design of efficient data transfer algorithms. In addition, increasing the number
of GPUs introduces a performance bottleneck to the discrete heterogeneous system
under the current topology where each node connects the GPU to the I/O hub via
the PCI Express bus. Compared to the memory bandwidth of GPUs, PCIe bus is
still quite narrow: it has a maximum of 16 PCI lanes, which can support only a peak
bandwidth of 8 GB/s while the peak bandwidth of GPU memory (e.g., Nvidia Tesla
M2070) can reach up to 148 GB/s [16]. This great throughput gap has emerged as
the major performance bottleneck in modern CPU-GPU systems.

4 Integrated CPU-GPU Systems

4.1 Overview of CPU-GPU Systems

Following the advances of VLSI technologies, the integration of CPUs and GPUs on
the same chip has become a hot research area. Such CPU-GPU systems provide the
opportunity to leverage both the high computational power from GPUs for regular
applications and flexible execution from CPUs for irregular workloads. In this
section, we will introduce the latest integrated CPU-GPU architectures, including
Intel’s Sandy Bridge, AMD’s Fusion, and NIVIDIA’s Denver. We will also discuss
the memory designs in such systems.

4.1.1 Intel Sandy Bridge

Figure 4 shows the architecture of the Sandy Bridge processor [34] that integrates
four high performance Intel Architecture cores, one GPU, on-chip cache, memory
controller and peripheral component interconnect (PCI) controller on the same die.
A 8 MB L3 cache memory is shared by both CPUs and GPU. The data flow is
optimized by a high performance on-die interconnect fabric (called “ring”). The
ring connects the CPUs, the GPU, the L3 cache and the system agent (SA) unit,
which houses a 1,600 MT/s dual-channel DDR3 memory controller, a 20-lane PCIe
gen2 controller, 2 parallel pipe display engines, a power management control unit
and testability logic. Sandy Bridge also has 6 power planes, 13 PLLs driving
independent clock domains, temperature control with 2 types of thermal sensors,
independent debug bus, as well as variable power supply for power and performance
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Fig. 4 Block diagram of
Sandy Bridge (Adapted from
Zhao et al. [35])

optimization. Because the L3 cache capacity of Sandy Bridge is large (3, 4 or
8 MB depending on the configuration), the power dissipated by the cache memory
accounts for a big portion of the overall design.

4.1.2 AMD Fusion

An accelerated processing unit (APU) is a system with additional processing
capability designated to accelerate one or more types of computations outside
a CPU. Some examples are general-purpose computing on graphics processing
unit (GPGPU), a field-programmable gate array (FPGA), or similar specialized
processing system. In some marketing relevant usage of the term, APU also
describes the processing device which integrates a CPU and a GPU on the same die,
thus improving the data transfer rates between these components while reducing the
total power consumption.

AMD Fusion is the series of such APU designs [1, 7, 8], including the version
for desktop processors, mobile processors, ultra-mobile processors, and embedded
processors. As the most representative version, the Llano variant is a complex
integration of processor, graphics, and multimedia resources. Here, we use Llano
architecture as the example to discuss the CPU-GPU system design in detail.

As shown in Fig. 5, the Llano variant combines four ×86 processor cores, a
unified video decoder, an integrated DirectX11 graphics core, and an integrated
two-head display controller. The entire integrated complex fits in a die area of
227 mm2 at 32-nm silicon on insulator (SOI) process. Twenty-four lanes of PCIe
Gen2 are also supported for high performance connectivity. Among them, 4 lanes
are dedicated to the Llano-to-Fusion controller hub (FCH) link, 4 lanes to general-
purpose ports, and the other 16 lanes to the discrete graphics that can expand
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Fig. 5 Block diagram of a fusion APU of AMD (Adapted from Branover et al. [1])

computing and graphics stream capabilities. Two display streams can be directed
to any combination of up to six display ports.

The integrated NorthBridge is the node where the processor, graphics, and multi-
media devices are jointly managed. It also mainly determines the APU performance
and power consumption. In NorthBridge, processor cores, I/O interfaces, graphics
and video accelerators are connected to two 64-bit channels of DRAM through a
multistage memory controller. Memory operates at data transfer rates up to DDR3-
1866 megatransfers per second (MT/s).

Llano uses a unified memory architecture (UMA) in which the processor and
graphics share a common memory. A portion of this memory is also dedicated
to graphics frame buffer. Graphics, multimedia, and display memory traffic is
routed through the graphics memory controller (GMC), which arbitrates between
the requestors and issues a well-behaved (from a memory access perspective) stream
of memory requests over the Radeon memory bus (RMB) to the NorthBridge. The
accesses from GMC to frame buffer memory are non-coherent and do not snoop the
processor caches. The RMB supports a 256-bit read data path and a 256-bit write
data path for each of the two memory channels.

The coherent accesses from graphics or multimedia to the DRAM are directed
over the fusion control link (FCL). The FCL consists of separated 128-bit read and
write data paths to serve as the path for the processor accesses to the I/O devices and
the dedicated graphics memory, and for the I/O accesses to the DRAM. Also, display
traffic imposes a real-time requirement on the whole memory system. The display
controller maintains a local frame buffer to store the next few lines to be sent to the
display panel; buffer underrun must be avoided because it results in visible tearing
effects on the panel. The DRAM controller prioritizes display requests indicating a
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nearly empty buffer over other traffics. Rather than supplying a continuous request
stream to refill the frame buffer, the display controller issues the requests to memory
in a burst, followed by a period of no request activities. In an idle system, this lets
the memory refresh itself between bursts, thus maximizing power efficiency.

The other graphics-related streams are managed in both the GMC and DRAM
controllers to ensure that the average memory latency never exceeds a configurable
threshold. The utilizations of processors and I/O traffic are arbitrated in the
NorthBridge front-end stage by allocating proper bandwidth to each of them. The
front-end output stream is arbitrated with the graphics-related stream in the DRAM
controller. The DRAM controller contains a starvation-prevention mechanism that
tracks the outstanding activity and ensures that the minimum required bandwidth
is allocated to each stream. Starvation timers indicate when a specific traffic class
needs to be stalled longer than the dynamically configurable threshold, and allows
forward progress. Software drivers or on-die firmware can dynamically adapt the
arbitration timers for specific workload scenarios.

4.1.3 NVIDIA Denver

Project Denver was developed by NVIDIA [3]. The innovative features of Denver
include an NVIDIA CPU running the ARM instruction set, which will be fully
integrated on the same chip as the NVIDIA GPU. By extending the performance
range of the ARM instruction-set architecture, project Denver opens a new era
for computing that enables the ARM architecture to cover a large portion of the
computing space. Coupled with an NVIDIA GPU, it provides the hybrid CPU-GPU
computing platform of the future with ultra-high performance and energy efficiency.

4.2 Memory Hierarchy for CPU-GPU Systems

The main bottleneck for most discrete GPU-based applications is the cost of data
transfers to and from the GPU over PCIe. The recent introduction of the AMD
Fusion provides a novel architecture to eliminate this bottleneck. By placing the
CPU on the same die as a SIMD engine, the fused device is able to eliminate most
of the costs of data transfer (e.g., PCIe transfers). The typical memory hierarchy for
such a fused system is shown in Fig. 6.

Table 1 summarizes the information of three AMD Fusion systems including
memory hierarchy configurations [2]. All systems have only one CPU core and the
same memory capacity of 2 GB. CPU cache hierarchies of the three processors are
all 2-level but with different capacities. The numbers of processing elements for
GPU vary from 80 to 1,600. The GPU side has a similar memory hierarchy but a
different number of processing units, yielding different throughput. Also, system
throughput is determined by not only the memory but also other factors such as
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Fig. 6 Memory hierarchy for
CPU-GPU systems

Table 1 Information of different fusion systems

Platform AMD Zacate AMD Radeon MD Radeon
APU HD 5870 HD 5450

Host
Processor AMD Engg. sample Intel Xeon E5405 Intel Celeron 430
Frequency 1.6 GHz 2.0 GHz 1.8 GHz
System memory 2 GB (NA) 2 GB DDR2 2 GB DDR2
Cache L1: 32K, L2: 512K L1: 32K, L2: 6M L1: 32K, L2: 512K
Kernel Ubuntu 2.6.35.22 Ubuntu 2.6.28.19 Ubuntu 2.6.32.24

Stream processors 80 1,600 80
Compute units 2 20 2
Memory bus type NA GDDR5 DDR3
Device memory 192 MB 1,024 MB 512 MB
Local memory 32 KB 32 KB 32 KB
Max. workgroup size 256 threads 256 threads 128 threads
Peak core clock freq. 492 MHz 850 MHz 675 MHz
Peak FLOPS 80 GFlop/s 2,720 GFlop/s 104 GFlop/s

operating frequency, on-chip interconnect, timing and memory controller. Different
workloads also generate different system performances on different platforms [2].

4.3 Design Issues in CPU-GPU Systems

As aforementioned, CPUs are designed for a wide range of applications while
GPUs are specialized for large scale parallel computing. Latency-sensitive CPUs
tend to adopt the memory with large capacity, like the DDR3 in the Llano APU.
In contrast, GPUs conventionally use GDDR memory with higher clock frequency
and wider buses to provide high data throughout. Compared to DDR3 memory,
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longer-latency GDDR memory reduces its capacity to minimize the power budget.
In integrated CPU-GPU systems, these two diverse cores share the same type
of memory, incurring performance degradation for either counterpart due to the
mismatch of memory requirements [25]. Furthermore, sharing memory between
CPU and GPU invokes access contention. It has been shown that the performance
penalty incurred by contention is up to 20% [25].

4.4 Adopting Emerging Nonvolatile Memory
in CPU-GPU Systems

Besides software-level data managements and optimizations, many hardware
solutions can be also implemented for the performance and power improvements
of CPU-GPU memory systems. As an example, emerging nonvolatile memory
technologies such as spin-transfer torque random access memory (STT-RAM) and
phase change memory (PCM) have been adopted for both cache and main memory
designs in CPU memory hierarchy.

Due to its relatively fast access speed and zero-leakage power, STT-RAM has
been adopted to replace SRAM as on-chip cache, which accounts for a large portion
of energy consumption. However, there are two major obstacles in using STT-RAM
for on-chip caches: long write latency and high write energy. When a STT-RAM cell
operates in the sub-10 ns region, the resistance switching mechanism of magnetic
tunnel junction (MTJ), which is the data storage device in STT-RAM, is dominated
by spin precession. The required switching current rises exponentially as the MTJ
switching time reduces. As a consequence, the size of MOS driving transistor
increases accordingly, leading to a large memory cell area. The lifetime of the STT-
RAM cell also degrades exponentially as the voltage across the oxide barrier of
the MTJ increases. Therefore, a 10 ns programming time is widely accepted as
the performance limit of STT-RAM designs in mainstream STT-RAM research
and development [4, 5, 13, 26, 31]. Several proposals have been made to address
the write speed and energy limitations of the STT-RAM. For example, the early
write termination scheme [36] mitigates the performance degradation and energy
overhead by terminating the unnecessarily long write pulse to STT-RAM cells. The
dual write speed scheme [31] improves the average access time of a STT-RAM
cache by having a fast and a slow cache partition. A SRAM/STT-RAM hybrid
cache hierarchy with 3D stacking structure was proposed in [26] to compensate the
performance degradation caused by STT-RAM writes by migrating write intensive
data block into SRAM-based cache way.

Due to its small cell size and multi-level cell (MLC) capability, PCM is
considered to be the replacement of DRAM in high-density main memory designs.
The first issue in PCM is its long programming latency and high programming
energy. A DRAM/PCM hybrid memory structure was proposed in [22] to merge
frequent writes into the DRAM cache so that the number of write accesses to
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the PCM devices can be greatly reduced. Write pausing [19] was proposed to
allow performance critical read operations to preempt writes. A morphable memory
system [20] was proposed to improve the read latency of MLC PCM by converting
one MLC PCM page into two SLC pages when there is sufficient memory. Another
issue in PCM is its limited programming endurance, since a PCM cell can only
be reprogrammed about 106 times [6]. A start-gap scheme was used in [21]
to efficiently enhance the PCM main memory lifetime by distributing the write
accesses among all the PCM cells. In [12], line-level mapping and salvaging are
combined to raise the limitation of wear-leveling technique for PCM-based main
memory.

5 Conclusion

CPU-GPU systems are widely employed in high performance cloud computing to
offer the computing capability in diverse scientific research fields. The major issues
in the existing CPU-GPU system designs include data communication performance
bottleneck, power efficiency and system scalability. In this chapter, we introduced
the currently prevalent CPU-GPU system architectures. The memory hierarchies
of these two kinds of computing units are extensively discussed. Based on the
architectural characteristics, we conducted a deep analysis on the performance
bottleneck of data transferring between CPU and GPU, the power efficiency of
the GPU memory, and their architecture limitations on scalability. Finally, we
discussed the adoption of emerging non-volatile memories in CPU-GPU systems
for performance optimization and power reduction.
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