Skip to main content

Modeling Proteins at the Interface of Structure, Evolution, and Population Genetics

  • Chapter
  • First Online:
Computational Modeling of Biological Systems

Abstract

Biological systems span multiple layers of organization and modeling across layers of organization enables inference that is not possible by analyzing just one layer. An example of this is seen in an organism’s fitness, which can be directly impacted by selection for output from a metabolic or signal transduction pathway. Even this complex process is already several layers removed from the environment and ecosystem. Within the pathway are individual enzymatic reactions and protein–protein, protein–small molecule, and protein–DNA interactions. Enzymatic and physical constants characterize these reactions and interactions, where selection dictates ranges and thresholds of values that are dependent upon values for other links in the pathway. The physical constants (for protein–protein binding, for example) are dictated by the amino acid sequences at the interface. These constants are also constrained by the amino acid sequences that are necessary to maintain a properly folded structure as a scaffold to maintain the interaction interface. As sequences evolve, population genetic and molecular evolutionary models describe the availability of combinations of amino acid changes for selection, depending in turn on parameters like the mutation rate and effective population size. As the systems biology level of constraints has not been thoroughly characterized, it is this multiscale modeling problem that describes the interplay between protein biophysical chemistry and population genetics/molecular evolution that we will describe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gillespie, J.H.: Some properties of finite populations experiencing strong selection and weak mutation. Am. Nat. 121, 691–708 (1983)

    Article  Google Scholar 

  2. Bornberg-Bauer, E., Chan, H.S.: Modeling evolutionary landscapes: Mutational stability, topology, and superfunnels in sequence space. PNAS. 96, 10689–10694 (1999)

    Article  ADS  Google Scholar 

  3. Melin, R., Li, H., Wingreen, N.S., Tang, C.: Designability, thermodynamic stability, and dynamics in protein folding: a lattice model study. J. Chem. Phys. 110, 1252–1262 (1999)

    Article  ADS  Google Scholar 

  4. Sali, A., Shakhnovich, E., Karplus, M.: How does a protein fold? Nature. 369, 248–251 (1994)

    Article  ADS  Google Scholar 

  5. Miyazawa, S., Jernigan, R.: Estimation of effective interresidue contact energies from protein crystal structures- Quasi-chemical approximation. Macromol. 18, 534–552 (1985)

    Article  ADS  Google Scholar 

  6. Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968)

    Google Scholar 

  7. Li, L., Mirny, L.A., Shakhnovich, E.I.: Kinetics, thermodynamics and evolution of non-native interactions in a protein folding nucleus. Nat. Struct. Mol. Biol. 7, 336–342 (2000)

    Article  Google Scholar 

  8. Williams, P., Pollock, D., Goldstein, R.: Evolution of functionality in lattice proteins. J. Mol. Graph. Model. 19, 150–156 (2001)

    Article  Google Scholar 

  9. Bloom, J., Wilke, C., Arnold, F.A.C.: Stability and the evolvability of function in a model protein. Biophys. J. 86, 2758–2764 (2004)

    Article  ADS  Google Scholar 

  10. Rastogi, S., Liberles, D.: Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28 (2005)

    Article  Google Scholar 

  11. He, X., Zhang, J.: Rapid Subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics. 169, 1157–1164 (2005)

    Article  Google Scholar 

  12. Massey, S.E., Churbanov, A., Rastogi, S., Liberles, D.A.: Characterizing positive and negative selection and their phylogenetic effects. Gene. 418, 22–26 (2008)

    Article  Google Scholar 

  13. Castoe, T.A., de Koning, A.P.J., Kim, H.M., Gu, W., Noonan, B.P., Naylor, G., Jiang, Z.J., Parkinson, C.L., Pollock, D.D.: Evidence for an ancient adaptive episode of convergent molecular evolution. PNAS. 106, 8986–8991 (2009)

    Article  ADS  Google Scholar 

  14. Taverna, D., Goldstein, R.: Why are proteins marginally stable? Proteins. 46, 105–109 (2002)

    Article  Google Scholar 

  15. Bastolla, U., Farwer, J., Knapp, E.W., Vendruscolo, M.: How to guarantee optimal stability for most representative structures in the protein data bank. Protein. Struct. Funct. Bioinf. 44, 79–96 (2001)

    Article  Google Scholar 

  16. Robinson, D.M., Jones, D.T., Kishino, H., Goldman, N., Thorne, J.L.: Protein evolution with dependence among codons due to tertiary structure. Mol. Biol. Evol. 20, 1692–1704 (2003)

    Article  Google Scholar 

  17. Parisi, G., Echave, J.: Structural constraints and emergence of sequence patterns in protein evolution. Mol. Biol. Evol. 18, 750–756 (2001)

    Article  Google Scholar 

  18. Bastolla, U., Porto, M., Eduardo Roman, M.H., Vendruscolo, M.H.: Connectivity of neutral networks, overdispersion, and structural conservation in protein evolution. J. Mol. Evol. 56, 243–254 (2003)

    Article  Google Scholar 

  19. Rastogi, S., Reuter, N., Liberles, D.A.: Evaluation of models for the evolution of protein sequences and functions under structural constraint. Biophys. Chem. 124, 134–144 (2006)

    Article  Google Scholar 

  20. Mukherjee, A., Bagchi, B.: Correlation between rate of folding, energy landscape, and topology in the folding of a model protein HP-36. J. Chem. Phys. 118, 4733–4747 (2003)

    Article  ADS  Google Scholar 

  21. Grahnen, J.A., Nandakumar, P., Kubelka, J., Liberles, D.A.: Evaluating protein threading and protein–protein interaction on proteomic and evolutionary scales. BMC Evol. Biol. 11, 361 (2011)

    Article  Google Scholar 

  22. Liberles, D.A., Tisdell, M.D.M., Grahnen, J.A.: Binding constraints on the evolution of enzymes and signaling proteins: The important role of negative pleiotropy. Philos. Trans. R. Soc. London B. 278, 1930–1935 (2011)

    Google Scholar 

  23. Baker, C., MacKerell, A.: Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers. J. Mol. Model. 16, 567–576 (2010)

    Article  Google Scholar 

  24. Christen, M., Hünenberger, P.H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D.P., Heinz, T.N., Kastenholz, M.A., Kräutler, V., Oostenbrink, C., Peter, C., Trzesniak, D., van Gunsteren, W.F.: The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem. 26(16), 1719–1751 (2005)

    Article  Google Scholar 

  25. Ponder, J.W., Wu, C., Ren, P., Pande, V.S., Chodera, J.D., Schnieders, M.J., Haque, I., Mobley, D.L., Lambrecht, D.S., DiStasio, R.A., Head-Gordon, M., Clark, G.N.I., Johnson, M.E., Head-Gordon, T.: Current status of the AMOEBA polarizable force field. J. Phys. Chem. B. 114, 2549–2564 (2010)

    Article  Google Scholar 

  26. Maguid, S., Fernandez-Alberti, S., Echave, J.: Evolutionary conservation of protein vibrational dynamics. Gene. 422, 7–13 (2008)

    Article  Google Scholar 

  27. Parisi, G., Echave, J.: The structurally constrained protein evolution model accounts for sequence patterns of the LbetaH superfamily. BMC Evol. Biol. 4, 41 (2004)

    Article  Google Scholar 

  28. Lartillot, N., Philippe, H.: A bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004)

    Article  Google Scholar 

  29. Lartillot, N., Philippe, H.: Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Philos. Trans. R. Soc. London B. 363, 1463–1472 (2008)

    Article  Google Scholar 

  30. Rodrigue, N., Philippe, H., Lartillot, N.: Assessing site-interdependent phylogenetic models of sequence evolution. Mol. Biol. Evol. 23, 1762–1775 (2006)

    Article  Google Scholar 

  31. Nasrallah, C.A., Mathews, D.H., Huelsenbeck, J.P.: Quantifying the impact of dependent evolution among sites in phylogenetic inference. Syst. Biol. 60, 60–73 (2011)

    Article  Google Scholar 

  32. Kleinman, C.L., Rodrigue, N., Lartillot, N., Philippe, H.: Statistical potentials for improved structurally constrained evolutionary models. Mol. Biol. Evol. 27, 1546–1560 (2010)

    Article  Google Scholar 

  33. Halpern, A.L., Bruno, W.J.: Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. Mol. Biol. Evol. 15, 910–917 (1998)

    Google Scholar 

  34. Kimura, M.: On the probability of fixation of mutant genes in a population. Genetics. 47, 713–719 (1962)

    Google Scholar 

  35. Goldman, N., Yang, Z.: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11(5), 725–736 (1994)

    Google Scholar 

  36. Berglund, A.C., Wallner, B., Elofsson, A., Liberles, D.A.: Tertiary windowing to detect positive diversifying selection. J. Mol. Evol. 60, 499–504 (2005)

    Article  Google Scholar 

  37. Liang, H., Zhou, W., Landweber, L.F.: SWAKK: a web server for detecting positive selection in proteins using a sliding window substitution rate analysis. Nucleic. Acids. Res. 34, W382–W384 (2006)

    Article  Google Scholar 

  38. Suzuki, Y.: Three-dimensional window analysis for detecting positive selection at structural regions of proteins. Mol. Biol. Evol. 21, 2352–2359 (2004)

    Article  Google Scholar 

  39. Koshi, J.M., Goldstein, R.A.: Context-dependent optimal substitution matrices. Protein. Eng. 8, 641–645 (1995)

    Google Scholar 

  40. Koshi, J.M., Mindell, D.P., Goldstein, R.A.: Beyond mutation matrices: physical-chemistry based evolutionary models. Genome Informatics. Refereed conference proceeding (1998)

    Google Scholar 

  41. Wong, W., Sainudiin, R., Nielsen, R.: Identification of physicochemical selective pressure on protein encoding nucleotide sequences. BMC Bioinformatics. 7, 148 (2006)

    Article  Google Scholar 

  42. Nielsen, R., Yang, Z.: Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Mol. Biol. Evol. 20, 1231–1239 (2003)

    Article  Google Scholar 

  43. Huzurbazar, S., Kolesov, G., Massey, S.E., Harris, K.C., Churbanov, A., Liberles, D.A.: Lineage-specific differences in the amino acid substitution process. J. Mol. Biol. 396, 1410–1421 (2010)

    Article  Google Scholar 

  44. Grantham, R.: Amino acid difference formula to help explain protein evolution. Science. 185, 862–864 (1974)

    Article  ADS  Google Scholar 

  45. Birky, C.W., Walsh, J.B.: Effects of linkage on rates of molecular evolution. PNAS. 85, 6414–6418 (1988)

    Article  ADS  Google Scholar 

  46. Lynch, M.: (2007) The Origins of Genome Architecture. Sinauer Associates, Sunderland, MA

    Google Scholar 

  47. Nevo, E., Kirzhner, V., Beiles, A., Korol, A.: Selection versus random drift: long–term polymorphism persistence in small populations (evidence and modelling). Philos. Trans. R. Soc. London Biol. 352, 381–389 (1997)

    Article  ADS  Google Scholar 

  48. Betancourt, A.J., Presgraves, D.C.: Linkage limits the power of natural selection in Drosophila. PNAS. 99, 13616–13620 (2002)

    Article  ADS  Google Scholar 

  49. Pal, C., Papp, B., Lercher, M.J.: An integrated view of protein evolution. Nat. Rev. Genet. 7, 337–348 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

D.A.L. is funded by NSF DBI-0743374 and NIH-INBRE award P20 RR016474. A.I.T. is supported by the aforementioned NSF award, while J.A.G. is supported by the aforementioned NIH-INBRE award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Liberles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Teufel, A.I., Grahnen, J.A., Liberles, D.A. (2012). Modeling Proteins at the Interface of Structure, Evolution, and Population Genetics. In: Dokholyan, N. (eds) Computational Modeling of Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2146-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2146-7_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2145-0

  • Online ISBN: 978-1-4614-2146-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics