Skip to main content

Theoretical Analysis of Molecular Transport Across Membrane Channels and Nanopores

  • Chapter
  • First Online:
Book cover Computational Modeling of Biological Systems

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2504 Accesses

Abstract

A successful functioning of cellular systems requires that some molecules and ions be transferred out of the cell while other particles should be taken in. The bidirectional flux is accomplished with the help of a complex system of membrane protein channels and pores [1, 2]. It is known that molecular transport across cellular membranes is fast, efficient, selective, and that the functioning of channels is robust with respect to strong nonequilibrium fluctuations in the cellular environment [2]. These observations are especially surprising because in many cases molecular translocation does not involve the use of metabolic energy or significant conformational changes [4]. Although in recent years significant advances in studying molecular transport in biological systems have been achieved, the mechanisms of translocation phenomena are still not well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.: Molecular Cell Biology, 4th edn. W.H. Freeman and Company, New York (2002)

    Google Scholar 

  2. Hille, B.: Ionic Channels of Excitable Membranes, 3rd edn. Sinauer Associates, Sunderland Massachusetts (2001)

    Google Scholar 

  3. Nekolla, S., Andersen, C., Benz, R.: Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophys. J. 66, 1388–1397 (1994)

    Article  Google Scholar 

  4. Wickner, W., Schekman, R.: Protein translocation across biological membranes. Science 310, 1452–1456 (2005)

    Google Scholar 

  5. Hilty, C., Winterhalter, M.: Facilitated substrate transport through membrane proteins. Phys. Rev. Lett. 86, 5624–5627 (2001)

    Article  ADS  Google Scholar 

  6. Kullman, L., Winterhalter, M., Bezrukov, S.M.: Transport of maltodextrins through maltoporin: a single-channel study. Biophys. J. 82, 803–812 (2002)

    Article  Google Scholar 

  7. Nestorovich, E.M., Danelon, C., Winterhalter, M., Bezrukov, S.M.: Designed to penetrate: time-resolved interactions of single antibiotic molecules with bacterial pores. Proc. Natl. Acad. Sci. USA 99, 9789–9794 (2002)

    Article  ADS  Google Scholar 

  8. Danelon, C., Brando, T. Winterhalter, M.: Probing the orientation of reconstituted maltoporin channels at the single-protein level. J. Biol. Chem. 278, 35542–35551 (2003)

    Article  Google Scholar 

  9. Schwarz, G., Danelon, C., Winterhalter, M.: On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence. Biophys. J. 84, 2990–2998 (2004)

    Article  Google Scholar 

  10. Krasilnikov, O.V., Rodrigues, C.G., Bezrukov, S.M.: Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys. Rev. Lett. 97, 018301 (2006)

    Article  ADS  Google Scholar 

  11. Caspi, Y., Zbaida, D., Elbaum, M.: Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett. 8, 3728–3734 (2008)

    Article  ADS  Google Scholar 

  12. Karginov, V.A., Nestorovich, E.M., Moayeri, M., Leppla, S.H., Bezrukov, S.M.: Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc. Natl. Acad. Sci. USA 102, 15075–15080 (2005)

    Article  ADS  Google Scholar 

  13. Kohli, P., Harrell, C.C., Cao, Z., Gasparac, R., Tan, W., Martin, C.R.: DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305, 984–986 (2004)

    Article  ADS  Google Scholar 

  14. Wolfe, A.J., Mohammad, M.M., Cheley, S., Bayley, H., Movileanu, L.: Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 129, 14034–14041 (2007)

    Article  Google Scholar 

  15. Mohammad, M.M., Prakash, S., Matouschek, A., Movileanu, L.: Controlling a single protein in a nanopore through electrostatic traps. J. Am. Chem. Soc. 130, 4081–4088 (2008)

    Article  Google Scholar 

  16. Niedzwiecki, D.J., Grazul, J., Movileanu, L.: Single-molecule observation of protein adsorption onto an inorganic surface. J. Am. Chem. Soc. 132, 10816–10822 (2010)

    Article  Google Scholar 

  17. Gillespie, D., Boda, D., He, Y., Apel, P., Siwy, Z.S.: Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing. Biophys. J. 95, 609–619 (2008)

    Article  Google Scholar 

  18. Jensen, M.O., Park, S., Tajkhorshid, E., Schulten, K.: Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc. Natl. Acad. Sci. USA 99, 6731–6736 (2002)

    Article  ADS  Google Scholar 

  19. de Groot, B.L., Grubmüller, H.: Water permeation across biological membranes: mechanism and dynamics of Aquaporin-1 and GlpF. Science 294, 2353–2357 (2001)

    Article  ADS  Google Scholar 

  20. Chou, T.: How fast do fluids squeeze through microscopic single-file pores? Phys. Rev. Lett. 80, 85–88 (1998)

    Article  ADS  Google Scholar 

  21. Chou, T.: Kinetics and thermodynamics across single-file pores: solute permeability and rectified osmosis. J. Chem. Phys. 110, 606–615 (1999)

    Article  ADS  Google Scholar 

  22. Berezhkovskii, A.M., Pustovoit, M.A., Bezrukov, S.M.: Channel-facilitated membrane transport: transit probability and interaction. J. Chem. Phys. 116, 9952–9956 (2002)

    Article  ADS  Google Scholar 

  23. Berezhkovskii, A.M., Pustovoit, M.A., Bezrukov, S.M.: Channel-facilitated membrane transport: average lifetimes in the channel. J. Chem. Phys. 119, 3943–3951 (2003)

    Article  ADS  Google Scholar 

  24. Berezhkovskii, A.M., Bezrukov, S.M.: Channel-facilitated membrane transport: constructive role of particle attraction to the channel pore. Chem. Phys. 319, 342–349 (2005)

    Article  ADS  Google Scholar 

  25. Berezhkovskii, A.M., Bezrukov, S.M.: Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Biophys. J. 88, L17–L19 (2005)

    Article  Google Scholar 

  26. Bezrukov, S.M., Berezhkovskii, A.M., Szabo, A.: Diffusion model of solute dynamics in a membrane channel: mapping onto the two-site model and optimizing the flux. J. Chem. Phys. 127, 115101 (2007)

    Article  ADS  Google Scholar 

  27. Berezhkovskii, A.M., Pustovoit, M.A., Bezrukov, S.M.: Fluxes of non-interacting and strongly repelling particles through a single conical channel: analytical results and their numerical tests. Chem. Phys. 375, 523–528 (2010)

    Article  ADS  Google Scholar 

  28. Kolomeisky, A.B.: Channel-facilitated molecular transport across membranes: attraction, repulsion and asymmetry. Phys.Rev. Lett. 98, 048105 (2007)

    Article  ADS  Google Scholar 

  29. Kolomeisky, A.B., Kotsev, S.: Effect of interactions on molecular fluxes and fluctuations in the transport across membrane channels. J. Chem. Phys. 128, 085101 (2008)

    Article  ADS  Google Scholar 

  30. Zilman, A.: Effects of multiple occupancy and interparticle interactions on selective transport through narrow channels: theory versus experiment. Biophys. J. 96, 1235–1248 (2009)

    Article  ADS  Google Scholar 

  31. Zilman, A., Pearson, J., Bel, G.: Effects of jamming on nonequilibrium transport times in nanochannels. Phys. Rev. Lett. 103, 128103 (2009)

    Article  ADS  Google Scholar 

  32. Kolomeisky, A.B., Slonkina, E.: Polymer translocation through a long nanopore. J. Chem. Phys. 118, 7112–7118 (2003)

    Article  ADS  Google Scholar 

  33. Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorists’s perspective. Ann. Rev. Phys. Chem. 58, 675–695 (2007)

    Article  ADS  Google Scholar 

  34. Chacinska, A., Pfanner, N., Meisinger, C.: How mitochondria import hydrophilic and hydrophobic proteins. Trends Cell Biol. 12, 299–303 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly B. Kolomeisky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kolomeisky, A.B. (2012). Theoretical Analysis of Molecular Transport Across Membrane Channels and Nanopores. In: Dokholyan, N. (eds) Computational Modeling of Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2146-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2146-7_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2145-0

  • Online ISBN: 978-1-4614-2146-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics