Skip to main content

Computer Simulations of Mechano-Chemical Networks Choreographing Actin Dynamics in Cell Motility

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

In eukaryotic cells, cell motility is largely driven by self-assembly and growth of filamentous networks comprised of actin. Numerous proteins regulate actin network dynamics either biochemically, or through mechanical interactions. This regulation is rather complex, intricately coordinated both spatially and temporally. Although experiments in vivo and in vitro have provided a trove of structural and biochemical information about actin-based cell motility processes, experimental data is not always easy to interpret unambiguously, sometimes various interpretations being in contradiction with each other. Hence, mathematical modeling approaches are necessary for providing a physical foundation for interpreting and guiding experiments. In particular, computer simulations based on physicochemical interactions provide a systems-level description of protrusion dynamics. In this contribution, we review recent progress in modeling actin-based cell motility using detailed computer simulations. We elaborate on the way actin network dynamics is determined by the interplay between chemical reactions, mechanical feedbacks, and transport bottlenecks. We also discuss the role of inherent randomness of elementary chemical reactions in determining the dynamical behavior of the mechano-chemical network controlling actin polymerization and growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002).

    Google Scholar 

  2. Noselli, S.: Drosophila, actin and videotape—new insights in wound healing. Nat. Cell Biol. 4(11), E251 (2002).

    Article  Google Scholar 

  3. Dent, E.W., Gertler, F.B.: Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40(2), 209 (2003).

    Article  Google Scholar 

  4. Jacinto, A., Wood, W., Balayo, T., Turmaine, M., Martinez-Arias, A., Martin, P.: Dynamic actin-based epithelial adhesion and cell matching during drosophila dorsal closure. Curr. Biol. 10, 1420 (2000).

    Article  Google Scholar 

  5. Yamazaki, D., Kurisu, S., Takenawa, T.: Regulation of cancer cell motility through actin reorganization. Cancer Sci. 96(7), 379 (2005).

    Article  Google Scholar 

  6. Lorenz, M., Yamaguchi, H., Wang, Y., Singer, R.H., Condeelis, J. Imaging sites of n-wasp activity in lamellipodia and invadopodia of carcinoma cells. Curr. Biol. 14(8), 697 (2004).

    Article  Google Scholar 

  7. Carlier, M.F. (ed.): Actin-Based Motility: Cellular, Molecular and Physical Aspects, 1st edn. Springer, New York (2010).

    Google Scholar 

  8. Mejillano, M., Kojima, S.I., Applewhite, D.A., Gertler, F.B., Svitkina, T.M., Borisy, G.G.: Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363 (2004).

    Article  Google Scholar 

  9. Schaus, T.E., Taylor, E.W., Borisy, G.G.: Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proc. Natl. Acad. Sci. USA 104(17), 7086 (2007).

    Article  ADS  Google Scholar 

  10. Mullins, R.D., Heuser, J.A., Pollard, T.D.: The interaction of arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95, 6181 (1998).

    Article  ADS  Google Scholar 

  11. Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments., Cell 112(4), 453 (2003).

    Google Scholar 

  12. Yang, C., Svitkina, T.: Visualizing branched actin filaments in lamellipodia by electron tomography. Nat. Cell Biol. 13(9), 1012 (2011).

    Article  Google Scholar 

  13. Schafer, D.A., Jennings, P.B., Cooper, J.A.: Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J. Cell. Biol. 135(1), 169 (1996).

    Article  Google Scholar 

  14. Cassimeris, L., Safer, D., Nachmias, V.T., Zigmond, S.H.: Thymosin beta 4 sequesters the majority of g-actin in resting human polymorphonuclear leukocytes. J. Cell. Biol. 119(5), 1261 (1992).

    Article  Google Scholar 

  15. Svitkina, T.M., Bulanova, E.A., Chaga, O.Y., Vignjevic, D.M., Kojima, S.I., Vasiliev, J.M., Borisy, G.G.: Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160(3), 409 (2003).

    Article  Google Scholar 

  16. Vavylonis, D., Kovar, D.R., O’Shaughnessy, B., Pollard, T.D.: Model of formin-associated actin filament elongation. Mol. Cell 21(4), 455 (2006).

    Article  Google Scholar 

  17. Schirenbeck, A., Arasada, R., Bretschneider, T., Stradal, T.E.B., Schleicher, M., Faix, J.: The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. Proc. Natl. Acad. Sci. USA 103(20), 7694 (2006).

    Article  ADS  Google Scholar 

  18. Heid, P.J., Geiger, J., Wessels, D., Voss, E., Soll, D.R.: Computer-assisted analysis of filopod formation and the role of myosin ii heavy chain phosphorylation in dictyostelium. J. Cell Sci. 118(Pt 10), 2225 (2005).

    Article  Google Scholar 

  19. Lan, Y., Papoian, G.A.: The stochastic dynamics of filopodial growth. Biophys. J. 94(10), 3839 (2008).

    Article  ADS  Google Scholar 

  20. Mogilner, A., Rubinstein, B.: The physics of filopodial protrusion. Biophys. J. 89(2), 782 (2005).

    Article  MathSciNet  Google Scholar 

  21. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam, (1992).

    Google Scholar 

  22. Lan, Y., Papoian, G.A.: Stochastic resonant signaling in enzyme cascades. Phys. Rev. Lett. 98(22), 228301 (2007).

    Article  ADS  Google Scholar 

  23. Kepler, T.B., Elston, T.C.: Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116 (2001).

    Article  ADS  Google Scholar 

  24. Sasai, M., Wolynes, P.G.: Stochastic gene expression as a many-body problem. Proc. Natl. Acad. Sci. USA 100(5), 2374 (2003).

    Article  ADS  Google Scholar 

  25. Korobkova, E., Emonet, T., Vilar, J.M.G., Shimizu, T.S., Cluzel, P.: From molecular noise to behavioural variability in a single bacterium. Nature 428, 574 (2004).

    Article  ADS  Google Scholar 

  26. Walczak, A.M., Onuchic, J.N., Wolynes, P.G.: Absolute rate theories of epigenetic stability. Proc. Natl. Acad. Sci. USA 102, 18926 (2005).

    Article  ADS  Google Scholar 

  27. Weinberger, L.S., Burnett, J.C., Toettcher, J.E., Arkin, A.P., Schaffer, D.V.: Stochastic gene expression in a lentiviral positive-feedback loop: Hiv-1 tat fluctuation drive phenotypic diversity. Cell 122, 169 (2005).

    Article  Google Scholar 

  28. Thattai, M., van Oudenaarden, A.: Stochastic gene expressions in fluctuating environments. Genetics 167, 523 (2004).

    Article  Google Scholar 

  29. Doi, M.: Second quantization representation for classical many-particle system. J. Phys. A 9(9), 1465 (1976).

    Article  ADS  Google Scholar 

  30. Lan, Y., Wolynes, P.G., Papoian, G.A.: A variational approach to the stochastic aspects of cellular signal transduction. J. Chem. Phys. 125, 124101 (2006).

    Article  ADS  Google Scholar 

  31. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, New York (1984).

    Book  MATH  Google Scholar 

  32. Fange, D., Berg, O.G., Sjöberg, P., Elf, J.: Stochastic reaction-diffusion kinetics in the microscopic limit. Proc. Natl. Acad. Sci. USA 107(46), 19820 (2010).

    Article  ADS  Google Scholar 

  33. Tanaka, N., Papoian, G.A.: Reverse-engineering of biochemical reaction networks from spatiotemporal correlations of fluorescence fluctuations. J. Theor. Biol. 264(2), 490 (2010).

    Article  Google Scholar 

  34. Zhuravlev, P.I., Papoian, G.A.: Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics. Proc. Natl. Acad. Sci. USA 106(28), 11570 (2009).

    Article  ADS  Google Scholar 

  35. Hu, L., Papoian, G.A.: Mechano-chemical feedbacks regulate actin mesh growth in lamellipodial protrusions. Biophys. J. 98(8), 1375 (2010).

    Article  ADS  Google Scholar 

  36. Zhuravlev, P.I., Der, B.S., Papoian, G.A.: Design of active transport must be highly intricate: a possible role of myosin and ena/vasp for g-actin transport in filopodia. Biophys. J. 98(8), 1439 (2010).

    Article  ADS  Google Scholar 

  37. Peskin, C., Odell, G., Oster, G.: Cellular motions and thermal fluctuations. Biophys. J. 65, 316 (1993).

    Article  ADS  Google Scholar 

  38. Lin, L.C.L., Brown, F.L.H.: Brownian dynamics in fourier space: membrane simulations over long length and time scales. Phys. Rev. Lett. 93(25), 256001 (2004).

    Article  ADS  Google Scholar 

  39. Pécréaux, J., Döbereiner, H.G., Prost, J., Joanny, J.F., Bassereau, P.: Refined contour analysis of giant unilamellar vesicles. Eur. Phys. J. E. 13(3), 277 (2004).DOI 10.1140/epje/i2004–10001- 9.

    Google Scholar 

  40. Gov, N.S., Safran, S.A.: Red blood cell membrane fluctuations and shape controlled by atp-induced cytoskeletal defects. Biophys. J. 88(3), 1859 (2005).DOI 10.1529/biophysj.104.045328.

    Google Scholar 

  41. Safran, S., Gov, N., Nicolas, A., Schwarz, U., Tlusty, T.: Physics of cell elasticity, shape and adhesion. Physica A 352(1), 171 (2005).

    Article  ADS  Google Scholar 

  42. Schaus, T.E., Borisy, G.G.: Performance of a population of independent filaments in lamellipodial protrusion. Biophys. J. 95, 1393 (2008).

    Article  ADS  Google Scholar 

  43. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340 (1977).

    Article  Google Scholar 

  44. Bugyi, B., Carlier, M.F.: Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39, 449 (2010).

    Article  Google Scholar 

  45. DiDonna, B.A., Levine, A.J.: Unfolding cross-linkers as rheology regulators in f-actin networks. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 75(4 Pt 1), 041909 (2007).

    Article  ADS  Google Scholar 

  46. Mellor, H.: The role of formins in filopodia formation. Biochim. Biophys. Acta. 1803(2), 191 (2010).

    Article  MathSciNet  Google Scholar 

  47. Pronk, S., Geissler, P.L., Fletcher, D.A.: Limits of filopodium stability. Phys. Rev. Lett. 100(25), 258102 (2008).

    Article  ADS  Google Scholar 

  48. Chan, C.E., Odde, D.J.: Traction dynamics of filopodia on compliant substrates. Science 322(5908), 1687 (2008).

    Article  ADS  Google Scholar 

  49. Gomez, T.M., Robles, E., Poo, M., Spitzer, N.C.: Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291(5510), 1983 (2001).

    Article  ADS  Google Scholar 

  50. Miller, J., Fraser, S.E., McClay, D.: Dynamics of thin filopodia during sea urchin gastrulation. Development 121(8), 2501 (1995).

    Google Scholar 

  51. Portera-Cailliau, C., Pan, D.T., Yuste, R.: Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 23(18), 7129 (2003).

    Google Scholar 

  52. Varnum-Finney, B., Reichardt, L.F.: Vinculin-deficient pc12 cell lines extend unstable lamellipodia and filopodia and have a reduced rate of neurite outgrowth. J. Cell Biol. 127(4), 1071 (1994).

    Article  Google Scholar 

  53. Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Ann. Rev. Phys. Chem. 58, 675 (2007).

    Article  ADS  Google Scholar 

  54. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001).

    Google Scholar 

  55. Berg, J.S., Cheney, R.E.: Myosin-x is an unconventional myosin that undergoes intrafilopodial motility. Nat. Cell Biol. 4(3), 246 (2002).

    Article  Google Scholar 

  56. Tokuo, H., Ikebe, M.: Myosin x transports mena/vasp to the tip of filopodia. Biochem. Biophys. Res. Commun. 319(1), 214 (2004).

    Article  Google Scholar 

  57. Kratky, O., Porod, G.: Röntgenuntersuchung gelöster fadenmoleküle. Rec. Trav. Chim. Pays-Bas. 68, 1106 (1949).

    Article  Google Scholar 

  58. Daniels, D.R.: Effect of capping protein on a growing filopodium. Biophys. J. 98(7), 1139 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  59. Bathe, M., Heussinger, C., Claessens, M.M.A.E., Bausch, A.R., Frey, E.: Cytoskeletal bundle mechanics. Biophys. J. 94(8), 2955 (2008).

    Google Scholar 

  60. Atilgan, E., Wirtz, D., Sun, S.X.: Mechanics and dynamics of actin-driven thin membrane protrusions. Biophys. J. 90(1), 65 (2006).

    Article  ADS  Google Scholar 

  61. Liu, A.P., Richmond, D.L., Maibaum, L., Pronk, S., Geissler, P.L., Fletcher, D.A., Membrane-induced bundling of actin filaments. Nat. Phys. 4(10), 789 (2008).

    Article  Google Scholar 

  62. Prost, J., Joanny, J.F., Lenz, P., Sykes, C.: Cell Motility, Biological and Medical Physics, Biomedical Engineering, pp. 1–30. Springer, New York (2008).

    Google Scholar 

  63. Lee, K.C., Gopinathan, A., Schwarz, J.M.: Modeling the formation of in vitro filopodia. J. Math. Biol. 63, 229–261 (2011).

    Article  MathSciNet  Google Scholar 

  64. Lauffenburger, D.A., Horwitz, A.F.: Cell migration: a physically integrated molecular process. Cell 84(3), 359 (1996).

    Article  Google Scholar 

  65. Svitkina, T., Borisy, G.G.: Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell. Biol. 145, 1009 (1999).

    Article  Google Scholar 

  66. Mogilner, A., Edelstein-Keshet, L.: Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83(3), 1237 (2002).

    Article  Google Scholar 

  67. Carlsson, A.: Growth of branched actin networks against obstacles. Biophys. J. 81, 1907 (2001).

    Article  ADS  Google Scholar 

  68. Carlsson, A.E.: Growth velocities of branched actin networks. Biophys. J. 84, 2907 (2003).

    Article  ADS  Google Scholar 

  69. Rubinstein, B., Jacobson, K., Mogilner, A.: Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model. Simul. 3, 413 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  70. Atilgan, E., Wirtz, D., Sun, S.X.: Morphology of lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophys. J. 89, 3589 (2005).

    Article  Google Scholar 

  71. Gov, N.S., Gopinathan, A.: Dynamics of membranes driven by actin polymerization. Biophys. J. 90(2), 454 (2006).

    Article  ADS  Google Scholar 

  72. Veksler, A., Gov, N.S.: Phase transitions of the coupled membrane-cytoskeleton modify cellular shape. Biophys. J. 93, 3798 (2007).

    Article  ADS  Google Scholar 

  73. Haviv, L., Brill-Karniely, Y., Mahaffy, R., Backouche, F., Ben-Shaul, A., Pollard, T.D., Bernheim-Groswasser, A.: Reconstitution of the transition from lamellipodium to filopodium in a membrane-free system. Proc. Natl. Acad. Sci. USA 103, 4906 (2006).

    Article  ADS  Google Scholar 

  74. Maree, A., Jilkine, A., Dawes, A., Grieneisen, V.A., Edelstein-Keshet, L.: Polarization and movement of keratocytes: a multiscale modelling approach. Bull. Math. Biol. 68, 1169 (2006).

    Article  Google Scholar 

  75. Huber, F., Kas, J., Stuhrmann, B.: Growing actin networks form lamellipodium and lamellum by self-assembly. Biophys. J. 95, 5508 (2008).

    Article  ADS  Google Scholar 

  76. Ideses, Y., Brill-Karniely, Y., Haviv, L., Ben-shaul, A., Bernheim-Groswasser, A.: Arp2/3 branched actin network mediates filopodia-like bundles formation in vitro. PLoS One. 3, e3297 (2008).

    Article  ADS  Google Scholar 

  77. Lacayo, C.I., Pincus, Z., Vanduijn, M.M., Wilson, C.A., Fletcher, D.A., Gertler, F.B., Mogilner, A., Theriot, J.A.: Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol. 5, 2035 (2007).

    Article  Google Scholar 

  78. Lee, K.C., Liu, A.J.: New proposed mechanism of actin-polymerization-driven motility. Biophys. J. 95, 4529 (2008).

    Article  ADS  Google Scholar 

  79. Ditlev, J.A., Vacanti, N.M., Novak, I.L., Loew, L.M.: An open model of actin dendritic nucleation. Biophys. J. 96, 3529 (2009).

    Article  ADS  Google Scholar 

  80. Hu, L., Papoian, G.A.: How does the antagonism between capping and anti-capping proteins control actin network dynamics? J. Phys. Condens. Matter 23, 374101 (2011).

    Article  Google Scholar 

  81. Pollard, T.D., Berro, J.: Mathematical models and simulations of cellular processes based on actin filaments. J. Biol. Chem. 284(9), 5433 (2009).

    Article  Google Scholar 

  82. Mogilner, A.: Mathematics of cell motility: have we got its number? J. Math. Biol. 58, 105 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  83. Theriot, J.A., Mitchison, T.J.: Actin microfilament dynamics in locomoting cells. Nature 352, 126 (1991).

    Article  ADS  Google Scholar 

  84. Karen, K., Pincus, Z., Allen, G.M., Barnhart, E.L., Marriott, G., Mogilner, A., Theriot, J.A.: Mechanism of shape determination in motile cells. Nature 453, 475 (2008).

    Article  ADS  Google Scholar 

  85. Pantaloni, D., Clainche, C.L., Carlier, M.F.: Mechanism of actin-based motility. Science 292(5521), 1502 (2001).

    Google Scholar 

  86. Beltzner, C.C., Pollard, T.D.: Pathway of actin filament branch formation by arp2/3 complex. J. Biol. Chem. 283, 7135 (2008).

    Article  Google Scholar 

  87. Bear, J.E., Svitkina, T.M., Krause, M., Schafer, D.A., Loureiro, J.L., Strasser, G.A., Maly, I.V., Chaga, O.Y., Cooper, J.A., Borisy, G.G., Gertler, F.B.: Antagonism between ena/vasp proteins and actin filament capping regulates fibroblast motility. Cell 109, 509 (2002).

    Article  Google Scholar 

  88. Bear, J.E., Gertler, F.B.: Ena/vasp: towards resolving a pointed controversy at the barbed end. J. Cell. Sci. 122, 1947 (2009).

    Article  Google Scholar 

  89. Carlier, M.F., Pantaloni, D.: Control of actin dynamics in cell motility. J. Mol. Biol. 269, 459 (1997).

    Article  Google Scholar 

  90. Loisel, T.P., Boujemaa, R., Pantaloni, D., Carlier, M.F.: Reconstitution of actin-based motility of listeria and shigella using pure proteins. Nature 401, 613 (1999).

    Article  ADS  Google Scholar 

  91. Akin, O., Mullins, R.D.: Capping protein increases the rate of actin-based motility by promoting filament nucleation by the arp2/3 complex. Cell 133, 841 (2008).

    Article  Google Scholar 

  92. Borukhov, I., Bruinsma, R.F., Gelbart, W.M., Liu, A.J.: Structural polymorphism of the cytoskeleton: a model of linker-assisted filament aggregation. Proc. Natl. Acad. Sci. USA 102, 3673 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support from the National Science Foundation under CAREER award CHE-0846701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garegin A. Papoian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhuravlev, P.I., Hu, L., Papoian, G.A. (2012). Computer Simulations of Mechano-Chemical Networks Choreographing Actin Dynamics in Cell Motility. In: Dokholyan, N. (eds) Computational Modeling of Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2146-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2146-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2145-0

  • Online ISBN: 978-1-4614-2146-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics