Skip to main content

Regulation of Oxygen Delivery by the Reaction of Nitrite with RBCs Under Hypoxic Conditions

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 737))

Abstract

A number of studies indicate a contribution of red blood cells (RBCs) to nitrite induced vasodilation. These processes are thought to involve nitrite reduction to nitric oxide (NO) by deoxygenated hemoglobin chains. NO generated in the RBC should, however, immediately be scavenged by hemoglobin, apparently negating any possible contribution of this reaction to vasodilation. We have been able to resolve this paradox by showing that nitrite reacted hemoglobin has an unexpectedly high affinity for the red cell membrane. This high affinity contributes to RBC induced vasodilation by two different pathways. (1) The increased membrane binding activates glycolysis and the synthesis of ATP. This newly synthesized ATP is released from the RBC under hypoxic conditions. The released ATP interacts with purinergic receptors on the endothelium that stimulate the synthesis of NO by endothelial NO synthase. This reaction will induce vasodilation without requiring that NO be released from the RBC. (2) The interaction with the membrane, of intermediates formed during the reaction of nitrite with deoxygenated hemoglobin, stimulates the release of NO from these intermediates. NO released on the membrane can escape the large pool of intracellular hemoglobin and be released into the vasculature resulting in vasodilation. Both of these processes linked to membrane associated nitrite reacted hemoglobin explain a role for RBCs in nitrite induced vasodilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ignore LJ, Cirino G, Casini A et al (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34:879–886

    Article  Google Scholar 

  2. Gautier C, Van FE, Mikula I et al (2006) Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun 341:816–821

    Article  PubMed  CAS  Google Scholar 

  3. Liu X, Miller MJ, Joshi MS et al (1998) Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem 273:18709–18713

    Article  PubMed  CAS  Google Scholar 

  4. Nagababu E, Ramasamy S, Abernethy DR et al (2003) Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J Biol Chem 278:46349–46356

    Article  PubMed  CAS  Google Scholar 

  5. Cosby K, Partovi KS, Crawford JH et al (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9:1498–1505

    Article  PubMed  CAS  Google Scholar 

  6. Cao Z, Bell JB, Mohanty JG et al (2009) Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation. Am J Physiol Heart Circ Physiol 297:H1494–H1503

    Article  PubMed  CAS  Google Scholar 

  7. Demehin AA, Abugo OO, Jayakumar R et al (2002) Binding of hemoglobin to red cell membranes with eosin-5-maleimide-labeled band 3: analysis of centrifugation and fluorescence data. Biochemistry 41:8630–8637

    Article  PubMed  CAS  Google Scholar 

  8. Tsai IH, Murthy SN, Steck TL (1982) Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 257:1438–1442

    PubMed  CAS  Google Scholar 

  9. Salgado MT, Nagababu E, Rifkind JM (2009) Quantification of intermediates formed during the reduction of nitrite by deoxyhemoglobin. J Biol Chem 284:12710–12718

    Article  PubMed  CAS  Google Scholar 

  10. Jagger JE, Bateman RM, Ellsworth ML et al (2001) Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 280:H2833–H2839

    PubMed  CAS  Google Scholar 

  11. Boland B, Himpens B, Vincent MF et al (1992) ATP activates P2x-contracting and P2y-relaxing purinoceptors in the smooth muscle of mouse vas deferens. Br J Pharmacol 107:1152–1158

    Article  PubMed  CAS  Google Scholar 

  12. Wolf CB (2007) Normal cardiac output, oxygen delivery and oxygen extraction. Adv Exp Med Biol 599:169–182

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Rifkind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Rifkind, J.M., Salgado, M.T., Cao, Z. (2012). Regulation of Oxygen Delivery by the Reaction of Nitrite with RBCs Under Hypoxic Conditions. In: Wolf, M., et al. Oxygen Transport to Tissue XXXIII. Advances in Experimental Medicine and Biology, vol 737. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1566-4_27

Download citation

Publish with us

Policies and ethics