Skip to main content

Quality Issues for Compression of Hyperspectral Imagery Through Spectrally Adaptive DPCM

  • Chapter
  • First Online:

Abstract

To meet quality issues of hyperspectral imaging, differential pulse code modulation (DPCM) is usually employed for either lossless or near-lossless data compression, i.e., the decompressed data have a user-defined maximum absolute error, being zero in the lossless case. Lossless compression thoroughly preserves the information of the data but allows a moderate decrement in transmission bit rate. Lossless compression ratios attained even by the most advanced schemes are not very high and usually lower than four. If strictly lossless techniques are not employed, a certain amount of information of the data will be lost. However, such an information may be partly due to random fluctuations of the instrumental noise. The rationale that compression-induced distortion is more tolerable, i.e., less harmful, in those bands, in which the noise is higher, and vice-versa, constitutes the virtually lossless paradigm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abrardo, A., Alparone, L., Bartolini, F.: Encoding-interleaved hierarchical interpolation for lossless image compression. Signal Processing 56(2), 321–328 (1997)

    Article  MATH  Google Scholar 

  2. Aiazzi, B., Alba, P., Alparone, L., Baronti, S.: Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction. IEEE Trans. Geosci. Remote Sensing 37(5), 2287–2294 (1999)

    Article  Google Scholar 

  3. Aiazzi, B., Alparone, L., Barducci, A., Baronti, S., Marcoionni, P., Pippi, I., Selva, M.: Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers. Annals of Geophysics 41(1), 1–9 (2006)

    Google Scholar 

  4. Aiazzi, B., Alparone, L., Barducci, A., Baronti, S., Pippi, I.: Estimating noise and information of multispectral imagery. J. Optical Engin. 41(3), 656–668 (2002)

    Article  Google Scholar 

  5. Aiazzi, B., Alparone, L., Baronti, S.: A reduced Laplacian pyramid for lossless and progressive image communication. IEEE Trans. Commun. 44(1), 18–22 (1996)

    Article  MATH  Google Scholar 

  6. Aiazzi, B., Alparone, L., Baronti, S.: Near-lossless compression of 3-D optical data. IEEE Trans. Geosci. Remote Sensing 39(11), 2547–2557 (2001)

    Article  Google Scholar 

  7. Aiazzi, B., Alparone, L., Baronti, S.: Context modeling for near-lossless image coding. IEEE Signal Processing Lett. 9(3), 77–80 (2002)

    Article  Google Scholar 

  8. Aiazzi, B., Alparone, L., Baronti, S.: Fuzzy logic-based matching pursuits for lossless predictive coding of still images. IEEE Trans. Fuzzy Systems 10(4), 473–483 (2002)

    Article  Google Scholar 

  9. Aiazzi, B., Alparone, L., Baronti, S.: Near-lossless image compression by relaxation-labelled prediction. Signal Processing 82(11), 1619–1631 (2002)

    Article  MATH  Google Scholar 

  10. Aiazzi, B., Alparone, L., Baronti, S.: Lossless compression of hyperspectral images using multiband lookup tables. IEEE Signal Processing Lett. 16(6), 481–484 (2009)

    Article  Google Scholar 

  11. Aiazzi, B., Alparone, L., Baronti, S., Lastri, C.: Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 4(4), 532–536 (2007)

    Article  Google Scholar 

  12. Aiazzi, B., Alparone, L., Baronti, S., Lotti, F.: Lossless image compression by quantization feedback in a content-driven enhanced Laplacian pyramid. IEEE Trans. Image Processing 6(6), 831–843 (1997)

    Article  Google Scholar 

  13. Aiazzi, B., Alparone, L., Baronti, S., Santurri, L.: Near-lossless compression of multi/hyperspectral images based on a fuzzy-matching-pursuits interband prediction. In: S.B. Serpico (ed.) Image and Signal Processing for Remote Sensing VII, vol. 4541, pp. 252–263 (2002)

    Google Scholar 

  14. Alecu, A., Munteanu, A., Cornelis, J., Dewitte, S., Schelkens, P.: On the optimality of embedded deadzone scalar-quantizers for wavelet-based L-infinite-constrained image coding. IEEE Signal Processing Lett. 11(3), 367–370 (2004)

    Article  Google Scholar 

  15. Alecu, A., Munteanu, A., Cornelis, J., Dewitte, S., Schelkens, P.: Wavelet-based scalable L-infinity-oriented compression. IEEE Trans Image Processing 15(9), 2499–2512 (2006)

    Article  Google Scholar 

  16. Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition–Parts I and II. IEEE Trans. Syst. Man Cybern.–B 29(6), 778–800 (1999)

    Google Scholar 

  17. Benazza-Benyahia, A., Pesquet, J.C., Hamdi, M.: Vector-lifting schemes for lossless coding and progressive archival of multispectral images. IEEE Trans. Geosci. Remote Sensing 40(9), 2011–2024 (2002)

    Article  Google Scholar 

  18. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York (1981)

    Google Scholar 

  19. Carpentieri, B., Weinberger, M.J., Seroussi, G.: Lossless compression of continuous-tone images. Proc. of the IEEE 88(11), 1797–1809 (2000)

    Article  Google Scholar 

  20. Chang, C.I.: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inform. Theory 46(5), 1927–1932 (2000)

    Article  MATH  Google Scholar 

  21. Deng, G., Ye, H., Cahill, L.W.: Adaptive combination of linear predictors for lossless image compression. IEE Proc.-Sci. Meas. Technol. 147(6), 414–419 (2000)

    Article  Google Scholar 

  22. Golchin, F., Paliwal, K.K.: Classified adaptive prediction and entropy coding for lossless coding of images. In: Proc. IEEE Int. Conf. on Image Processing, vol. III/III, pp. 110–113 (1997)

    Google Scholar 

  23. Huang, B., Sriraja, Y.: Lossless compression of hyperspectral imagery via lookup tables with predictor selection. In: L. Bruzzone (ed.) Proc. of SPIE, Image and Signal Processing for Remote Sensing XII, vol. 6365, pp. 63650L.1–63650L.8 (2006)

    Google Scholar 

  24. Jayant, N.S., Noll, P.: Digital Coding of Waveforms: Principles and Applications to Speech and Video. Prentice Hall, Englewood Cliffs, NJ (1984)

    Google Scholar 

  25. Ke, L., Marcellin, M.W.: Near-lossless image compression: minimum entropy, constrained-error DPCM. IEEE Trans. Image Processing 7(2), 225–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Keshava, N.: Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sensing 42(7), 1552–1565 (2004)

    Article  Google Scholar 

  27. Kiely, A.B., Klimesh, M.A.: Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing 47(8), 2672–2678 (2009)

    Article  Google Scholar 

  28. Klimesh, M.: Low-complexity adaptive lossless compression of hyperspectral imagery. In: Satellite Data Compression, Communication and Archiving II, Proc. SPIE, vol. 6300 pp. 63000N.1–63000N.9 (2006)

    Google Scholar 

  29. Lastri, C., Aiazzi, B., Alparone, L., Baronti, S.: Virtually lossless compression of astrophysical images. EURASIP Journal on Applied Signal Processing 2005(15), 2521–2535 (2005)

    Article  MATH  Google Scholar 

  30. Magli, E., Olmo, G., Quacchio, E.: Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC. IEEE Geosci. Remote Sensing Lett. 1(1), 21–25 (2004)

    Article  Google Scholar 

  31. Matsuda, I., Mori, H., Itoh, S.: Lossless coding of still images using minimum-rate predictors. In: Proc. IEEE Int. Conf. on Image Processing, vol. I/III, pp. 132–135 (2000)

    Google Scholar 

  32. Mielikainen, J.: Lossless compression of hyperspectral images using lookup tables. IEEE Signal Proc. Lett. 13(3), 157–160 (2006)

    Article  Google Scholar 

  33. Mielikainen, J., Toivanen, P.: Clustered DPCM for the lossless compression of hyperspectral images. IEEE Trans. Geosci. Remote Sensing 41(12), 2943–2946 (2003)

    Article  Google Scholar 

  34. Mielikainen, J., Toivanen, P., Kaarna, A.: Linear prediction in lossless compression of hyperspectral images. J. Optical Engin. 42(4), 1013–1017 (2003)

    Article  Google Scholar 

  35. Penna, B., Tillo, T., Magli, E., Olmo, G.: Progressive 3-D coding of hyperspectral images based on JPEG 2000. IEEE Geosci. Remote Sensing Lett. 3(1), 125–129 (2006)

    Article  Google Scholar 

  36. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Compression Standard. Van Nostrand Reinhold, New York (1993)

    Google Scholar 

  37. Ramabadran, T.V., Chen, K.: The use of contextual information in the reversible compression of medical images. IEEE Trans. Medical Imaging 11(2), 185–195 (1992)

    Article  Google Scholar 

  38. Rao, A.K., Bhargava, S.: Multispectral data compression using bidirectional interband prediction. IEEE Trans. Geosci. Remote Sensing 34(2), 385–397 (1996)

    Article  Google Scholar 

  39. Rao, K.K., Hwang, J.J.: Techniques and Standards for Image, Video, and Audio Coding. Prentice Hall, Engl. Cliffs, NJ (1996)

    Google Scholar 

  40. Reichel, J., Menegaz, G., Nadenau, M.J., Kunt, M.: Integer wavelet transform for embedded lossy to lossless image compression. IEEE Trans. Image Processing 10(3), 383–392 (2001)

    Article  MATH  Google Scholar 

  41. Rice, R.F., Plaunt, J.R.: Adaptive variable-length coding for efficient compression of spacecraft television data. IEEE Trans. Commun. Technol. COM-19(6), 889–897 (1971)

    Google Scholar 

  42. Rizzo, F., Carpentieri, B., Motta, G., Storer, J.A.: Low-complexity lossless compression of hyperspectral imagery via linear prediction. IEEE Signal Processing Lett. 12(2), 138–141 (2005)

    Article  Google Scholar 

  43. Roger, R.E., Cavenor, M.C.: Lossless compression of AVIRIS images. IEEE Trans. Image Processing 5(5), 713–719 (1996)

    Article  Google Scholar 

  44. Said, A., Pearlman, W.A.: An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Processing 5(9), 1303–1310 (1996)

    Article  Google Scholar 

  45. Tate, S.R.: Band ordering in lossless compression of multispectral images. IEEE Trans. Comput. 46(4), 477–483 (1997)

    Article  MathSciNet  Google Scholar 

  46. Taubman, D.S., Marcellin, M.W.: JPEG2000: Image compression fundamentals, standards and practice. Kluwer Academic Publishers, Dordrecht, The Netherlands (2001)

    Google Scholar 

  47. Wang, J., Zhang, K., Tang, S.: Spectral and spatial decorrelation of Landsat-TM data for lossless compression. IEEE Trans. Geosci. Remote Sensing 33(5), 1277–1285 (1995)

    Article  Google Scholar 

  48. Weinberger, M.J., Rissanen, J.J., Arps, R.B.: Applications of universal context modeling to lossless compression of gray-scale images. IEEE Trans. Image Processing 5(4), 575–586 (1996)

    Article  Google Scholar 

  49. Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Processing 9(8), 1309–1324 (2000)

    Article  Google Scholar 

  50. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30, 520–540 (1987)

    Article  Google Scholar 

  51. Wu, X., Bao, P.: L constrained high-fidelity image compression via adaptive context modeling. IEEE Trans. Image Processing 9(4), 536–542 (2000)

    Article  MATH  Google Scholar 

  52. Wu, X., Memon, N.: Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 45(4), 437–444 (1997)

    Article  Google Scholar 

  53. Wu, X., Memon, N.: Context-based lossless interband compression–Extending CALIC. IEEE Trans. Image Processing 9(6), 994–1001 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Aiazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aiazzi, B., Alparone, L., Baronti, S. (2012). Quality Issues for Compression of Hyperspectral Imagery Through Spectrally Adaptive DPCM. In: Huang, B. (eds) Satellite Data Compression. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1183-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1183-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1182-6

  • Online ISBN: 978-1-4614-1183-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics