Skip to main content

Outlier-Resilient Entropy Coding

  • Chapter
  • First Online:
  • 1189 Accesses

Abstract

Many data compression systems rely on a final stage based on an entropy coder, generating short codes for the most probable symbols. Images, multispectroscopy or hyperspectroscopy are just some examples, but the space mission concept covers many other fields. In some cases, especially when the on-board processing power available is very limited, a generic data compression system with a very simple pre-processing stage could suffice. The Consultative Committee for Space Data Systems made a recommendation on lossless data compression in the early 1990s, which has been successfully used in several missions so far owing to its low computational cost and acceptable compression ratios. Nevertheless, its simple entropy coder cannot perform optimally when large amounts of outliers appear in the data, which can be caused by noise, prompt particle events, or artifacts in the data or in the pre-processing stage. Here we discuss the effect of outliers on the compression ratio and we present efficient solutions to this problem. These solutions are not only alternatives to the CCSDS recommendation, but can also be used as the entropy coding stage of more complex systems such as image or spectroscopy compression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Portell, E. García-Berro, X. Luri, and A. G. Villafranca, “Tailored data compression using stream partitioning and prediction: application to Gaia,” Experimental Astronomy 21, 125–149 (2006).

    Article  Google Scholar 

  2. CCSDS-101.0-B-5 Blue Book, Telemetry channel coding, 2001.

    Google Scholar 

  3. D. Solomon, Data Compression. The complete reference, Springer, 2004.

    Google Scholar 

  4. CCSDS-121.0-B-1 Blue Book, Lossless data compression, 1993.

    Google Scholar 

  5. CCSDS-120.0-G-2 Informational Report, Lossless data compression, 2006.

    Google Scholar 

  6. R. F. Rice, “Some practical universal noiseless coding techniques,” JPL Technical Report 79–22 (1979).

    Google Scholar 

  7. S. W. Golomb, “Run-lengths encodings,” IEEE Transactions on Information Theory 12, 399–401 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  8. P.-S. Yeh, “Implementation of CCSDS lossless data compression for space and data archive applications,” Proc. CCSDS Space Operations Conf., 60–69, 2002.

    Google Scholar 

  9. P.-S. Yeh, P. Armbruster, A. Kiely, B. Masschelein, G. Moury, C. Schaefer, and C. Thiebaut, “The new CCSDS image compression recommendation,” IEEE Aerospace Conf., 4138–4145, 2005.

    Google Scholar 

  10. M. Clotet, J. Portell, A. G. Villafranca, and E. García-Berro, “Simple resiliency improvement of the CCSDS standard for lossless data compression,” Proc. SPIE 7810, 2010.

    Google Scholar 

  11. J. Portell, A. G. Villafranca, and E. García–Berro, “Designing optimum solutions for lossless data compression in space,” Proc. ESA On-Board Payload Data Compression Workshop, 35–44, 2008.

    Google Scholar 

  12. J. Portell, A. G. Villafranca, and E. García-Berro, “A resilient and quick data compression method of prediction errors for space missions,” Proc. SPIE 7455, 2009.

    Google Scholar 

  13. P.-S. Yeh, R. Rice, and W. Miller, “On the optimality of code options for a universal noiseless coder,” JPL Technical Report 91–2 (1991).

    Google Scholar 

  14. D. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IRE 40, 1098–1101 (1952).

    Article  Google Scholar 

  15. I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Communicat. ACM 30, 520–540 (1987).

    Article  Google Scholar 

  16. Teuhola, J., “A compression method for clustered bit-vectors,” Information Processing Letters 7(6), 308–311 (1978).

    Article  MATH  Google Scholar 

  17. Howard, P. and Vitter, J., “Fast progressive lossless image compression,” in Image and Video Compression Conference, SPIE, 98–109 (1994).

    Google Scholar 

  18. M. A. C. Perryman, K. S. de Boer, G. Gilmore, E. Hoeg, M. G. Lattanzi, L. Lindegren, X. Luri, F. Mignard, O. Pace, and P. T. Zeeuw, “Gaia: Composition, formation and evolution of the Galaxy,” Astronomy & Astrophysics 369, 339–363 (2001).

    Article  Google Scholar 

  19. Nieto-Santisteban, M. A., Fixsen, D. J., Offenberg, J. D., Hanisch, R. J. & Stockman, H. S., “Data Compression for NGST”, in Astronomical Data Analysis Software and Systems VIII, vol. 172 of Astronomical Society of the Pacific Conference Series, 137–140 (1999).

    Google Scholar 

  20. C. E. Shannon, “A mathematical theory of communication,” Bell system technical journal, vol. 27, 1948.

    Google Scholar 

  21. A. Kiely and M. Klimesh, “Generalized Golomb codes and adaptive coding of wavelettransformed image subbands,” JPL Technical Report, IPN 42–154 (2003).

    Google Scholar 

  22. C. Babusiaux, “The Gaia Instrument and Basic Image Simulator,” in The Three-Dimensional Universe with Gaia, ESA SP-576, 125–149 (2005).

    Google Scholar 

  23. F. Murtagh and R. H.Warmels, “Test image descriptions,” in Proc. 1st ESO/ST-ECF Data Analysis Workshop, 17(6), 8–19 (1989).

    Google Scholar 

  24. Portell, J., Villafranca, A. G., and García-Berro, E., “Quick outlier-resilient entropy coder for space missions,” Journal of Applied Remote Sensing 4 (2010).

    Google Scholar 

  25. A. G. Villafranca, I. Mora, P. Ruiz-Rodríguez, J. Portell, and E. García-Berro, “Optimizing GPS data transmission using entropy coding compression”, Proc. SPIE 7810, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Portell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Portell, J., Villafranca, A.G., García-Berro, E. (2012). Outlier-Resilient Entropy Coding. In: Huang, B. (eds) Satellite Data Compression. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1183-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1183-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1182-6

  • Online ISBN: 978-1-4614-1183-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics