Skip to main content

FPGA Design of Listless SPIHT for Onboard Image Compression

  • Chapter
  • First Online:

Abstract

Space missions are designed to leave Earth’s atmosphere and operate in outer space. Satellite imaging payloads operate mostly with a store-and-forward mechanism, in which captured images are stored on board and transmitted to ground later on. With the increase of spatial resolution, space missions are faced with the necessity of handling an extensive amount of imaging data. The increased volume of image data exerts great pressure on limited bandwidth and onboard storage. Image compression techniques provide a solution to the “bandwidth vs. data volume” dilemma of modern spacecraft. Therefore, compression is becoming a very important feature in the payload image processing units of many satellites [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yu, G., Vladimirova, T., Sweeting, M. (2009). Image compression systems on board satellites. Acta Astronautica 64: 988–1005.

    Article  Google Scholar 

  2. Jayant, N.S., Noll, P. (1984). Digital Coding of Waveforms: Principles and Applications to Speech and Video. Prentice-Hall, Englewood Cliffs NJ.

    Google Scholar 

  3. Rabbani, M., Jones, P.W. (1991). Digital Image Compression Techniques. SPIE Press, Bellingham WA.

    Book  Google Scholar 

  4. Brower, B.V., Couwenhoven, D., Gandhi, B., Smith, C. (1993). ADPCM for advanced LANDSAT downlink applications. Conference Record of the 27th Asilomar Conference on Signals, System, and Computers, vol. 2, November 1–3, 1993: 1338–1341.

    Google Scholar 

  5. Weinberger, M.J., Seroussi, G., Sapiro, G. (2000). The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Transactions on Image Processing 9(8): 1309–1324.

    Article  Google Scholar 

  6. Pennebaker, W.B., Mitchell, J.L. (1993). JPEG Still Image Data Compression Standard. Chapman & Hall, New York.

    Google Scholar 

  7. Shapiro, J.M. (1993). Embedded image coding using zero trees of wavelet coefficients. IEEE Trans. on Signal Processing 41(12): 3445–3462.

    Article  MATH  Google Scholar 

  8. Said, A., Pearlman, W.A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. on Circuits and Systems for Video Technology 6(3): 243–250.

    Article  Google Scholar 

  9. Taubman, D. (2000). High-performance scalable image compression with EBCOT. IEEE Trans. on Image Processing 9(7): 1158–1170.

    Article  Google Scholar 

  10. Information Technology—JPEG2000 Image Coding System—Part 1: Core Coding System. ISO/IEC 15444–1, 2000.

    Google Scholar 

  11. CCSDS 120.1-G-1, Image Data Compression. CCSDS Recommendation for Space Data System Standards, June 2007.

    Google Scholar 

  12. Kremic, T., Anderson, D.J., Dankanich, J.W. (2008). NASA’s in-space propulsion technology project overview and mission applicability. IEEE Conference on Aerospace, Big Sky, Montana, March 1–8: 1–10.

    Google Scholar 

  13. Shapiro, A.A. (2005). An ultra-reliability project for NASA. IEEE Conference on Aerospace Big Sky, Montana, March 5–12: 99–110.

    Google Scholar 

  14. NASA’s footprints in space for 50 years. International Aviation (12), 2008.

    Google Scholar 

  15. http://www.satimagingcrop.com/satellite-sensors/ikonos.html..

  16. Baraldi, A., Durieux, L., Simonetti, D., Conchedda, G., Holecz, F., Blonda, P. (2010). Automatic spectral rule-based preliminary classification of radiometrically calibrated SPOT-4/-5/IRS, AVHRR/MSG, AATSR, IKONOS/QuickBird/OrbView/GeoEye, and DMC/SPOT-1/-2 imagery—Part II: classification accuracy assessment. IEEE Transactions on Geoscience and Remote Sensing,48 (3) :1326–1354.

    Google Scholar 

  17. http://www.satimagingcrop.com/satellite-sensors/spot-5.html.

  18. Steltzner, A., Kipp, D., Chen, A., Burkhart, D., Guernsey, C., Mendeck, G., Mitcheltree, R., Powell, R., Rivellini, T., San Martin, M., Way, D. (2006). Mars Science Laboratory entry, descent, and landing system. IEEE Conference on Aerospace Big Sky, Montana, March 3–10:1–19.

    Google Scholar 

  19. Hurd, W.J., Estabrook, P., Racho, C.S., Satorius, E.H. (2002). Critical spacecraft-to-Earth communications for Mars Exploration Rover (MER) entry, descent, and landing. IEEE Aerospace Conference Proceedings, vol. 3: 1283–1292.

    Google Scholar 

  20. Kiely, A., Klimesh, M. (2003). The ICER Progressive Wavelet Image Compressor. IPN Progress Report 42–155, November 15, 2003.

    Google Scholar 

  21. Lin, W.K., Burgess, N. (1999). Low memory color image zero-tree coding. Proceedings, Information, Decision, and Control (IDC 99) Conference, Adelaide, SA, Australia: 91–95.

    Google Scholar 

  22. Chen, J., Li, Y., Wu, C. (2001). A listless minimum zero-tree coding algorithm for wavelet image compression. Chinese Journal of Electronics 10(2): 200–203.

    Google Scholar 

  23. Liu, K., Wu, C., Li, Y., et al. (2004). Bit-plane-parallel VLSI architecture for a modified SPIHT algorithm using depth-first search bit stream processing (in Chinese). Journal of Xidian University 31(5): 753–756.

    Google Scholar 

  24. Liu, K., Wang, K., Li, Y., Wu, C. (2007). A novel VLSI architecture for real-time line-based wavelet transform using lifting scheme. Journal of Computer Science and Technology 22(5): 661–672.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunsong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, Y., Song, J., Wu, C., Liu, K., Lei, J., Wang, K. (2012). FPGA Design of Listless SPIHT for Onboard Image Compression. In: Huang, B. (eds) Satellite Data Compression. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1183-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1183-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1182-6

  • Online ISBN: 978-1-4614-1183-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics