Skip to main content

Effects of Lossy Compression on Hyperspectral Classification

  • Chapter
  • First Online:
Satellite Data Compression

Abstract

Rapid advancements in sensor technology have produced remotely sensed data with hundreds of spectral bands. As a result, there is now an increasing need for efficient compression algorithms for hyperspectral images. Modern sensors are able to generate a very large amount of data from satellite systems and compression is required to transmit and archive this hyperspectral data in most cases. Although lossless compression is preferable in some applications, its compression efficiency is around three [1–3]. On the other hand, lossy compression can achieve much higher compression rates at the expense of some information loss. Due to its increasing importance, many researchers have studied the compression of hyperspectral data and numerous methods have been proposed, including transform-based methods (2D and 3D), vector quantization [3–5], and predictive techniques [6]. Several authors have used principal component analysis to remove redundancy [7–9] and some researchers have used standard compression algorithms such as JPEG and JPEG 2000 for the compression of hyperspectral imagery [9–14]. The discrete wavelet transform has been applied to the compression of hyperspectral images [15, 16] and several authors have applied the SPIHT algorithm to the compression of hyperspectral imagery [17–23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Aiazzi, P. Alba, L. Alparone, and S. Baronti, “Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction,” IEEE Trans. Geosci. Remote Sens. vol. 37, no. 5, pp. 2287–2294, 1999.

    Article  Google Scholar 

  2. E. Magli, G. Olmo, and E. Quacchio, “Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC,” IEEE Geosci. Remote Sens. Lett. vol. 1, no. 1, pp. 21–25, 2004.

    Article  Google Scholar 

  3. M. J. Ryan, and J. F. Arnold, “Lossy compression of hyperspectral data using vector quantization,” Remote Sensing of Environment vol. 61, no. 3, pp. 419–436, 1997.

    Article  Google Scholar 

  4. M. J. Ryan, and J. F. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE Trans. Geosci. Remote Sens. vol. 35, no. 3, pp. 546–550, 1997.

    Article  Google Scholar 

  5. Q. Shen-En, “Hyperspectral data compression using a fast vector quantization algorithm,” IEEE Trans. Geosci. Remote Sens. vol. 42, no. 8, pp. 1791–1798, 2004.

    Article  Google Scholar 

  6. G. Gelli, and G. Poggi, “Compression of hyperspectral images by spectral classification and transform coding,” IEEE Trans. Image Process. vol. 8, pp. 476–489, 1999.

    Article  Google Scholar 

  7. A. Kaarna, “Integer PCA and wavelet transforms for hyperspectral image compression,” in Proc. IEEE IGARSS’01, 2001, pp. 1853–1855.

    Google Scholar 

  8. S. Lim, K. Sohn, and C. Lee, “Principal component analysis for compression of hyperspectral images,” in Proc. IEEE IGARSS’01, 2001, pp. 97–99.

    Google Scholar 

  9. D. Qian, and J. E. Fowler, “Hyperspectral Image Compression Using JPEG2000 and Principal Component Analysis,” IEEE Geosc. Remote Sens. Lett. vol. 4, no. 2, pp. 201–205, 2007.

    Article  Google Scholar 

  10. H. S. Lee, N. H. Younan, and R. L. King, “Hyperspectral image cube compression combining JPEG-2000 and spectral decorrelation,” in IGARSS ’02., 2002, pp. 3317–3319.

    Google Scholar 

  11. M. D. Pal, C. M. Brislawn, and S. R. Brumby, “Feature extraction from hyperspectral images compressed using the JPEG-2000 standard,” in Image Analysis and Interpretation, 2002. Proceedings. Fifth IEEE Southwest Symposium on, 2002, pp. 168–172.

    Google Scholar 

  12. J. T. Rucker, J. E. Fowler, and N. H. Younan, “JPEG2000 coding strategies for hyperspectral data,” in IEEE IGARSS ’05, 2005, pp. 4 pp.

    Google Scholar 

  13. B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” Geosci. Remote Sens. Lett. vol. 3, no. 1, pp. 125–129, 2006.

    Article  Google Scholar 

  14. B. Aiazzi, P. S. Alba, L. Alparone, and S. Baronti, “Reversible compression of hyperspectral imagery based on an enhanced inter-band JPEG prediction,” in Proc. IEEE IGARSS’97, 1997, pp. 1990–1992.

    Google Scholar 

  15. L. M. Bruce, C. H. Koger, and L. Jiang, “Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,” IEEE Trans. Geosci. Remote Sens. vol. 40, no. 10, pp. 2331–2338, 2002.

    Article  Google Scholar 

  16. S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens. vol. 41, no. 4, pp. 863–871, 2003.

    Article  Google Scholar 

  17. P. L. Dragotti, G. Poggi, and A. R. P. Ragozini, “Compression of hyperspectral images by three-dimensional SPIHT algorithm,” IEEE Trans. Geosci. Remote Sens. vol. 38, pp. 416–428, 2000.

    Article  Google Scholar 

  18. B.-J. Kim, and Z. Xiong, “Low bit-rate scalable video coding with 3-D set partition in hierarchical trees(3-D SPIHT),” IEEE Trans. Circuits Syst. Video Technol. vol. 10, no. 8, pp. 1374–1387, 2000.

    Article  Google Scholar 

  19. E. Christophe, C. Mailhes, and P. Duhamel, “Hyperspectral Image Compression: Adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding,” IEEE Trans. Image Process. vol. 17, no. 12, pp. 2334–2346, 2008.

    Article  MathSciNet  Google Scholar 

  20. T. Xiaoli, C. Sungdae, and W. A. Pearlman, “Comparison of 3D set partitioning methods in hyperspectral image compression featuring an improved 3D-SPIHT,” in Data Compression Conference, 2003. Proceedings. DCC 2003, 2003, pp. 449.

    Google Scholar 

  21. X. Tang, S. Cho, and W. A. Pearlman, “3D set partitioning coding methods in hyperspectral image compression,” in IEEE ICIP’03, 2003, pp. II-239–42 vol.3.

    Google Scholar 

  22. A. Said, and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol. vol. 6, pp. 243–250, 1996.

    Article  Google Scholar 

  23. S. Lim, K. Sohn, and C. Lee, “Compression for hyperspectral images using three dimensional wavelet transform,” in Proc. IEEE IGARSS’01, 2001, pp. 109–111

    Google Scholar 

  24. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sensing of Environment vol. 65, no. 3, pp. 227–248, 1998.

    Article  Google Scholar 

  25. Fukunaga, Introduction to Statistical Pattern Recognition, New York: Academic Press, 1990.

    MATH  Google Scholar 

  26. J. A. Richards, Remote Sensing Digital Image Analysis, Berlin, Germany: Springer-Verlag, 1993.

    Google Scholar 

  27. C. Lee, and D. A. Landgrebe, “Feature extraction based on the decision boundaries,” IEEE Trans. Pattern Anal. Machine Intell. vol. 15, pp. 388–400, 2002.

    Article  Google Scholar 

  28. S. Kumar, J. Ghosh, and M. M. Crawford, “Best-bases feature extraction algorithms for classification of hyperspectral data,” IEEE Trans. Geosci. Remote Sens. vol. 39, no. 7, pp. 1368–1379, 2001.

    Article  Google Scholar 

  29. A. Cheriyadat, and L. M. Bruce, “Why principal component analysis is not an appropriate feature extraction method for hyperspectral data,” in IGARSS ’03., 2003, pp. 3420–3422 vol.6.

    Google Scholar 

  30. G. Strang, Linear Algebra and Its Applications, Tokyo, Japan: Harcourt Brace Jovanovich, Inc., 1998.

    Google Scholar 

  31. C. Lee, and E. Choi, “Compression of hyperspectral images with enhanced discriminant features,” in IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003, pp. 76–79.

    Google Scholar 

  32. C. Lee, E. Choi, J. Choe, and T. Jeong, “Dimension Reduction and Pre-emphasis for Compression of Hyperspectral Images,” in Proc. LNCS (ICIAR), 2004, pp. 446–453.

    Google Scholar 

  33. S. Lee, J. Lee, and C. Lee, “Bit allocation for 2D compression of hyperspectral images for classification,” in Proc. SPIE 7455, 2009, pp. 745507.

    Article  Google Scholar 

  34. C. Lee, E. Choi, T. Jeong, S. Lee, and J. Lee, “Compression of hyperspectral images with discriminant features enhanced,” Journal of Applied Remote Sensing, Satellite Data Compression Special, 2010.

    Google Scholar 

  35. C. Lee, and D. Landgrebe, “Analyzing high dimensional hyperspectral data,” IEEE Trans. Geosci. Remote Sens. vol. 31, no. 4, pp. 792–800, 2002.

    Article  Google Scholar 

  36. J. A. Saghri, A. G. Tescher, and J. T. Reagan, “Practical transform coding of hyperspectral imagery,” IEEE Signal Process. Mag. vol. 12, pp. 32–43, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulhee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, C., Lee, S., Lee, J. (2012). Effects of Lossy Compression on Hyperspectral Classification. In: Huang, B. (eds) Satellite Data Compression. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1183-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1183-3_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1182-6

  • Online ISBN: 978-1-4614-1183-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics