Skip to main content

Divide-and-Conquer Decorrelation for Hyperspectral Data Compression

  • Chapter
  • First Online:
  • 1206 Accesses

Abstract

Recent advances in the development of modern satellite sensors have increased the need for image coding, because of the huge volume of such collected data. It is well-known that the Karhunen-Loêve transform provides the best spectral decorrelation. However, it entails some drawbacks like high computational cost, high memory requirements, its lack of component scalability, and its difficult practical implementation. In this contributed chapter we revise some of the recent proposals that have been published to mitigate some of these drawbacks, in particular, those proposals based on a divide-and-conquer decorrelation strategy. In addition, we provide a comparison among the coding performance, the computational cost, and the component scalability of these different strategies, for lossy, for progressive lossy-to-lossless, and for lossless remote-sensing image coding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transfom. IEEE Trans. Comput., C-23(1):90–93, Jan. 1974.

    Google Scholar 

  2. Isidore Paul Akam Bita, Michel Barret, Florio Dalla Vedova, and Jean-Louis Gutzwiller. Lossy compression of MERIS superspectral images with exogenous quasi optimal coding transforms. In Bormin Huang, Antonio J. Plaza, and Raffaele Vitulli, editors, Satellite Data Compression, Communication, and Processing V, volume 7455, page 74550U. SPIE, 2009.

    Google Scholar 

  3. Isidore Paul Akam Bita, Michel Barret, and Dinh-Tuan Pham. On optimal orthogonal transforms at high bit-rates using only second order statistics in multicomponent image coding with JPEG2000. Elsevier Signal Processing, 90(3):753 – 758, 2010.

    MATH  Google Scholar 

  4. Isidore Paul Akam Bita, Michel Barret, and Dinh-Tuan Pham. On optimal transforms in lossy compression of multicomponent images with JPEG2000. Elsevier Signal Processing, 90(3):759–773, 2010.

    MATH  Google Scholar 

  5. Michel Barret, Jean-Louis Gutzwiller, Isidore Paul Akam Bita, and Florio Dalla Vedova. Lossy hyperspectral images coding with exogenous quasi optimal transforms. In Data Compression Conf. 2009 (DCC 2009), pages 411–419. IEEE Press, Mar. 2009.

    Google Scholar 

  6. I. Blanes and J. Serra-Sagristà. Clustered reversible-KLT for progressive lossy-to-lossless 3d image coding. In Data Compression Conf. 2009 (DCC 2009), pages 233–242. IEEE Press, Mar. 2009.

    Google Scholar 

  7. I. Blanes and J. Serra-Sagristà. Cost and scalability improvements to the Karhunen-Loêve transform for remote-sensing image coding. IEEE Trans. Geosci. Remote Sens., 48(7):2854–2863, Jul. 2010.

    Article  Google Scholar 

  8. I. Blanes and J. Serra-Sagristà. Pairwise orthogonal transform for spectral image coding. IEEE Trans. Geosci. Remote Sens., 49(3):961–972, Mar. 2011.

    Google Scholar 

  9. F. A. M. L. Bruekers and A. W. M. van den Enden. New networks for perfect inversion and perfect reconstruction. IEEE J. Sel. Areas Commun., 10(1):130–137, 1992.

    Article  Google Scholar 

  10. Inderjit Singh Dhillon. A New O(n 2 ) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem. PhD thesis, EECS Department, University of California, Berkeley, Oct 1997.

    Google Scholar 

  11. Q. Du, W. Zhu, H. Yang, and J. E. Fowler. Segmented principal component analysis for parallel compression of hyperspectral imagery. IEEE Geosci. Remote Sens. Lett., 6(4):713–717, Oct. 2009.

    Article  Google Scholar 

  12. L. Galli and S. Salzo. Lossless hyperspectral compression using KLT. IEEE Int’l Geosci. and Remote Sens. Symp. Proc. (IGARSS 2004), 1–7:313–316, 2004.

    Google Scholar 

  13. G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins University Press, Oct. 1996.

    MATH  Google Scholar 

  14. Ian R. Greenshields and Joel A. Rosiene. A fast wavelet-based Karhunen-Loeve transform. Pattern Recognition, 31(7):839–845, Jul. 1998.

    Article  Google Scholar 

  15. Group on Interactive Coding of Images. Spectral transform software. http://gici.uab.cat/, 2010.

  16. P. W. Hao and Q. Y. Shi. Matrix factorizations for reversible integer mapping. IEEE Trans. Signal Process., 49(10):2314–2324, 2001.

    Article  MathSciNet  Google Scholar 

  17. Jet Propulsion Laboratory, NASA. Hyperspectral image compression website. http://compression.jpl.nasa.gov/hyperspectral/.

  18. Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley, second edition, 1998.

    Google Scholar 

  19. L.S. Lan and I.S. Reed. Fast approximate Karhunen-Loeve transform (AKLT) with applications to digital image-coding. Elsevier Visual Commun. and Image Process. 93, 2094:444–455, 1993.

    Google Scholar 

  20. Barbara Penna, Tammam Tillo, Enrico Magli, and Gabriella Olmo. Transform coding techniques for lossy hyperspectral data compression. IEEE Trans. Geosci. Remote Sens., 45(5):1408–1421, May 2007.

    Google Scholar 

  21. A.D. Pirooz and I.S. Reed. A new approximate Karhunen-Loeve transform for data compression. Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems and Computers, 1–2:1471–1475, 1998.

    Google Scholar 

  22. John A. Saghri and Seton Schroeder. An adaptive two-stage KLT scheme for spectral decorrelation in hyperspectral bandwidth compression. Proc. SPIE, 7443:744313, Sept. 2009.

    Google Scholar 

  23. John A. Saghri, Seton Schroeder, and Andrew G. Tescher. Adaptive two-stage Karhunen-Loeve-transform scheme for spectral decorrelation in hyperspectral bandwidth compression. SPIE Optical Engineering, 49:057001, May 2010.

    Google Scholar 

  24. Peter Schelkens, Athanassios Skodras, and Touradj Ebrahimi, editors. The JPEG 2000 Suite. Wiley, Sept. 2009.

    Google Scholar 

  25. D.S. Taubman. Kakadu software. http://www.kakadusoftware.com/, 2000.

  26. D.S. Taubman and M.W. Marcellin. JPEG2000: Image Compression Fundamentals, Standards, and Practice, volume 642. Kluwer International Series in Engineering and Computer Science, 2002.

    Google Scholar 

  27. Lei Wang, Jiaji Wu, Licheng Jiao, and Guangming Shi. 3D medical image compression based on multiplierless low-complexity RKLT and shape-adaptive wavelet transform. ICIP 2009. Proceedings of 2009 International Conference on Image Processing, pages 2521–2524, Nov. 2009.

    Google Scholar 

  28. Lei Wang, Jiaji Wu, Licheng Jiao, and Guangming Shi. Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT. IEEE Geosci. Remote Sens. Lett., 6(3):587–591, July 2009.

    Google Scholar 

  29. Y. Wongsawat. Lossless compression for 3-D MRI data using reversible KLT. Int’l Conf. on Audio, Language and Image Processing, 2008. (ICALIP 2008)., pages 1560–1564, July 2008.

    Google Scholar 

  30. Y. Wongsawat, S. Oraintara, and K. R. Rao. Integer sub-optimal Karhunen-Loève transform for multi-channel lossless EEG compression. European Signal Processing Conference, 2006.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Spanish Government, by the Catalan Government, and by FEDER under grants TIN2009-14426-C02-01, TIN2009-05737-E/TIN, SGR2009-1224, and FPU2008. Computational resources used in this work were partially provided by the Oliba Project of the Universitat Autònoma de Barcelona. This work was also supported by the Belgian Government via the Fund for Scientific Research Flanders (postdoctoral fellowship Peter Schelkens). The authors would like to thank NASA and USGS for providing the Hyperion images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Blanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blanes, I., Serra-Sagristà, J., Schelkens, P. (2012). Divide-and-Conquer Decorrelation for Hyperspectral Data Compression. In: Huang, B. (eds) Satellite Data Compression. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1183-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1183-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1182-6

  • Online ISBN: 978-1-4614-1183-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics