Skip to main content

Spline type summability for multivariate sampling

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The introductory material briefly describes certain mathematical aspects of signal processing which are centered around the celebrated Whittaker-Kotelnikov-Shannon sampling theorem and the spline type summability method for cardinal series developed by Schoenberg. The bulk of this article is devoted to an exposition of a version of the spline summability method for recovering multivariate band limited functions from discrete lattice samples which uses polyharmonic splines. The pertinent theory of such splines is outlined and the details of the reconstruction method, whose range of application includes data which may grow at infinity, are developed. Some of the proofs and results are new, even when reduced to the univariate case. Certain related material, including generalizations and numerical aspects, is also briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M Atteia, Hilbertian kernels and spline functions, Studies in Computational Mathematics, 4, North-Holland Publishing Co., Amsterdam, 1992.

    MATH  Google Scholar 

  2. J. J. Benedetto, Irregular sampling and frames, in [8], 445–507.

    Google Scholar 

  3. J. J. Benedetto and M. W. Frazier, eds., Wavelets: Mathematics and Applications, CRC Press, 1993.

    Google Scholar 

  4. R. P. Boas, Entire Functions, Academic Press, New York, 1954.

    MATH  Google Scholar 

  5. P. L. Butzer and R. L. Stens, Sampling theory for not necessarily band-limited functions: a historical overview, SIAM Rev. 34, (1992), 40–53.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. L. Butzer, W. Splettstösser, and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch, Math- Verein.,90, (1988), 1–70.

    MATH  Google Scholar 

  7. C. K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.

    MATH  Google Scholar 

  8. C. K. Chui, ed., Wavelets: A Tutorial in Theory and Applications, Academic Press, Boston, 1992.

    MATH  Google Scholar 

  9. I. Daubechies, Ten Lecture on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, SIAM, Philadelphia, 1992.

    Google Scholar 

  10. C. deBoor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.

    Book  Google Scholar 

  11. C. deBoor, K. Höllig, and S. Riemenschneider, Convergence of cardinal series, Proc. Amer. Math. Soc. 98, (1986), 457–460.

    Article  MathSciNet  Google Scholar 

  12. C. deBoor, K. Höllig, and S. Riemenschneider, Box Splines, Springer- Verlag, New York, 1993

    Google Scholar 

  13. C. deBoor, ed., I. J. Schoenberg: Selected Papers, Contemporary Mathematicians Series, Birkhäuser-Verlag, Basel, 1988.

    Google Scholar 

  14. G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., 5, (1989), 49–58.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Duchon, Splines minimizing rotation-invariant seminorms in Sobolev spaces, in Constructive Theory of Functions of Several Variables, W. Schempp and K. Zeller, eds., Springer-Verlag, New York, 1977, 85–100.

    Chapter  Google Scholar 

  16. H. G. Feichtinger and K. Gröchenig, Theory and practice of irregular sampling, in [3], 305–363.

    Google Scholar 

  17. P. J. S. G. Ferreira, Proceedings of the 1997 International Workshop on Sampling and Applications, Aveiro, Portugal, 16–19 June, 1997.

    Google Scholar 

  18. F. Franke, Scattered data interpolation: tests of some methods, Math. Comp.,38, (1982), 181–199.

    MathSciNet  MATH  Google Scholar 

  19. R. P. Gosselin, On the LP theory of cardinal series, Ann. of Math.,78, (1963), 567–581.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. P. Gosselin, Singular integrals and cardinal series, Studia Math.,44, (1972), 39–45.

    MathSciNet  MATH  Google Scholar 

  21. R. P. Gosselin and J. H. Neuwirth, On Paley-Wiener bases, J. Math. Mech., 18 (1968/69), 871–879.

    MathSciNet  Google Scholar 

  22. J. R. Higgins, Sampling Theory in Fourier and Signal Analysis, Oxford University Press, Oxford, 1996.

    MATH  Google Scholar 

  23. L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, New York, 1969.

    MATH  Google Scholar 

  24. S. V. Hrushchev, N. K. Nikol’skii, and P. S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, in Complex Analysis and Spectral Theory, V. P. Havin and N. K. Nikoľskii (eds.), Lecture Notes in Mathematics 864, Springer-Verlag, Berlin, 1981, 214–335.

    Chapter  Google Scholar 

  25. K. Jetter and J. Stockier, Algorithms for cardinal interpolation using box splines and radial basis functions, Numer. Math, 60, (1991), 97–114.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.-P. Kahane and P.-G. Lemarié-Rieusset, Fourier Series and Wavelets, Gordon and Breach, Amsterdam, 1995.

    Google Scholar 

  27. E. J. Kansa, ed., Advances in the Theory and Applications of Radial Basic Functions, issue of Computers and Mathematics Vol. 24, No. 12, (1992).

    Google Scholar 

  28. V. A. Kotelnikov, On the transmission capacity of “ether” and wire in eleetroeommunications, Ail-Union Energetics Committee, Izd. Red. Ups. Svyazi RKKA, Moscow, 1933.

    Google Scholar 

  29. P.-G. Lemarié, Bases d’ondelettes sur les groupes de Lie stratifies, Bull. Soc. Math. France, 117, (1989), 211–232.

    MathSciNet  MATH  Google Scholar 

  30. B. Ya. Levin, Lectures on Entire Functions, Translation of mathematical monographs, Vol. 150, American Math. Society, Providence, 1996.

    MATH  Google Scholar 

  31. Yu. Lyubarskii and W. R. Madych, The recovery of irregularly sampled band limited functions via tempered splines, J. Functional Analysis,125 (1994), 201–222.

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu. Lyubarskii and W. R. Madych, The characterization and recovery of a class of band limited signals from irregular samples, in [17], 317–320.

    Google Scholar 

  33. Yu. Lyubarskii and K. Seip, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt (Ap) condition, Reυista Math. Iber., to appear

    Google Scholar 

  34. W. R. Madych and E. H. Potter, Error estimates for multivariate interpolation, J. Approximation Theory, 43, (1985), 132–139.

    Article  MathSciNet  MATH  Google Scholar 

  35. W. R. Madych, Cardinal interpolation with polyharmonic splines, in Multivariate Aproximation IV, C. K. Chui, W. Schempp, and K. Zeller, eds., Birkhäuser-Verlag, Basel, 1989, 241–248.

    Google Scholar 

  36. W. R. Madych, Polyharmonic splines, multiscale analysis, and entire functions, in Multivariate Approximation and Interpolation, W. Hauß- mann and K. Jetter, eds., Birkhäuser Verlag, Basel, 1990, 205–216.

    Google Scholar 

  37. W. R. Madych and S. A. Nelson, Polyharmonic cardinal splines, J. Approx. Theory 60, (1990), 141–156.

    Article  MathSciNet  MATH  Google Scholar 

  38. W. R. Madych and S. A. Nelson, Polyharmonic cardinal splines: a minimization property, J. Approx. Theory 63, (1990), 303–320.

    Article  MathSciNet  MATH  Google Scholar 

  39. W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions II, Math. Comp. 54, (1990), 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  40. W. R. Madych, Error estimates for interpolation by generalized splines, in Curves and Surfaces, P. J. Laurent, A. LeMehaute, and L. L. Schumaker, eds. Academic Press, Boston, 1991, 297–306.

    Google Scholar 

  41. W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory,70, (1992), pp. 94–114

    Article  MathSciNet  MATH  Google Scholar 

  42. W. R. Madych, Miscellaneous error bounds for multiquadic and related interpolators, in [27], 121–138.

    Google Scholar 

  43. W. R. Madych, Orthogonal wavelet bases for L2 (Rn ), Fourier analysis: analytic and geometric aspects, W.O. Bray et al, eds, Marcel Dekker, New York, 1994, 243–303.

    Google Scholar 

  44. Y. Meyer, Wavelets and Operators, translated from 1990 French original by D. H. Salinger, Cambridge Studies in Advanced Mathematics 37, Cambridge Univ. Press, Cambridge, 1992.

    MATH  Google Scholar 

  45. C. A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Cons. Approx. 2, (1986), 11–22.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Z. Nashed and G. G. Walter, General sampling theorems for functions in reproducing kernel Hilbert spaces, Math. Con. Sig. Sys., 4, (1991), 363–390.

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons Ltd and B. G. Teubner, Stuttgart, 1986.

    MATH  Google Scholar 

  48. R.E.A.C. Paley and N. Wiener, Fourier transforms in the complex domain, Colloq. Pub. 19, Amer. Math. Soc., Providence, 1934.

    MATH  Google Scholar 

  49. B. S. Pavlov, The basis property of a system of exponentials and the condition of Muckenhoupt, Dokl. Acad. Nauk SSSR,247, no. 1, (1979), 37–40.

    Google Scholar 

  50. E. M. Petersen and D. Middleton, Sampling and reconstruction of wave-number-limited functions in N-dimensional Euclidean spaces, Inform. Control 5, (1962), 279–223.

    Article  MathSciNet  Google Scholar 

  51. S. D. Riemenschneider, Convergence of interpolating cardinal splines: power growth, Israel J. Math. 23, (1976), 339–346.

    Article  MathSciNet  MATH  Google Scholar 

  52. C. E. Shannon, Communication in the presence of noise, Proc. IRE,37, (1949), 20–21.

    Article  MathSciNet  Google Scholar 

  53. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, Univ. of Illinois Press, Urbana, 1949.

    MATH  Google Scholar 

  54. I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Part A and B, Quart. Appl. Math. 4, (1946), 45–99 and 112–141.

    MathSciNet  Google Scholar 

  55. I. J. Schoenberg, Cardinal Spline Interpolation, CBMS Vol. 12, SIAM, Philadelphia, 1973.

    MATH  Google Scholar 

  56. I. J. Schoenberg, Cardinal interpolation and spline function VII: The behavior of cardinal spline interpolation as their degree tends to infinity, J. Analyse. Math. 27, (1974), 205–229.

    Article  MathSciNet  MATH  Google Scholar 

  57. L J. Schoenberg, On the remainders and the convergence of cardinal spline interpolation for almost peroidic functions, in Studies in Spline Functions and Approximation Theory, S. Karlin et al, eds., Academic Press, Boston, 1976, 277–303.

    Google Scholar 

  58. D. Slepian, On bandwidth, Proc. IEEE , 64, (1976), 292–300.

    Article  MathSciNet  Google Scholar 

  59. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.

    MATH  Google Scholar 

  60. D. Walnut, Nonperiodic sampling of band limited functions on unions of rectangular lattices, J. Fourier Anal. Appl. 2, (1996), 435–452.

    Article  MathSciNet  MATH  Google Scholar 

  61. G. G. Walter, Wavelets and Other Orthogonal Systems with applications, CRC Press, Boca Raton, 1994.

    MATH  Google Scholar 

  62. E. T. Whittaker, On functions which are represented by the expansions of the interpolatory theory, Proc. Roy. Soc. Edinburgh 35, (1915), 181–194.

    Google Scholar 

  63. J. M. Whittaker, On the cardinal function of interpolation theory, Proc. Edinburgh Math. Soc. 1 (1929), 41–46.

    Article  Google Scholar 

  64. R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.

    MATH  Google Scholar 

  65. A. I. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, 1993.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Madych, W.R. (1999). Spline type summability for multivariate sampling. In: Bray, W.O., Stanojević, Č.V. (eds) Analysis of Divergence. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2236-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2236-1_27

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7467-4

  • Online ISBN: 978-1-4612-2236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics