Skip to main content

A topological and functional analytic approach to statistical convergence

  • Chapter
Analysis of Divergence

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This paper gives an overview of the theory of statistical convergence and extends a result of Fridy and Orhan. A sequence x is said to be statistically convergent to L with respect to the finitely additive measure μ provided that ‘almost all’ of the values x are arbitarily close to L with respect to μ. One can also define what is meant by a μ-statistical cluster point of a sequence, μ-statistical limit superior of a sequence and so forth and thus create a theory of convergence that includes ordinary convergence. In this note we review some of the basic results of μ-statistical convergence, indicate either topological or functional analytic proofs of some basic results and provide a means of isolating the invariants of statistical convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, R.P., Cores of complex sequences and of their transforms, Amer. J. Math. 61 (1939), 178–186

    Article  MathSciNet  Google Scholar 

  2. Atalla, R. and Bustoz, J., On sequential cores and a theorem of R.R. Phelps, Proc. Amer. Math. Soc. 21 (1969), 36–42.

    Article  MathSciNet  MATH  Google Scholar 

  3. Atalla, R. On the multiplicative behavior of regular matrices, Proc. Amer. Math. Soc. 26 (1970), 437–446.

    Article  MathSciNet  MATH  Google Scholar 

  4. Atalla, R., On the consistency theorem in matrix summability, Proc. Amer. Math. Soc. 35 (1972) no. 2, 416–422.

    Article  MathSciNet  MATH  Google Scholar 

  5. Buck, R.C., Generalized Asymptotic Densities, American J. Math. 75 (1953), 335–46.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chun, C.S. and Freedman, A.R., Theorems and examples for R-type summability methods, J. Korean Math. Soc. 25 (1988), 315–324.

    MathSciNet  MATH  Google Scholar 

  7. Chun, C.S. and Freedman, A.R., A bounded consistency theorem for strong summabilities, Inter. J. Math. Sci. 12 (1989), 39–46.

    Article  MathSciNet  MATH  Google Scholar 

  8. Connor, J., The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), 47–63.

    MathSciNet  MATH  Google Scholar 

  9. Connor, J., Two valued measures and summability, Analysis 10 (1990), 373–385.

    MathSciNet  MATH  Google Scholar 

  10. Connor, J., R-type summability methods, Cauchy criteria, P-sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), no. 2, 319–327.

    MathSciNet  MATH  Google Scholar 

  11. Connor, J., Gap tauberian theorems, Bull. Austral. Math. Soc. 47 (1993), no. 3, 385–393.

    Article  MathSciNet  MATH  Google Scholar 

  12. Connor, J. and Kline, J., On Statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), no. 2 392–399.

    Article  MathSciNet  MATH  Google Scholar 

  13. Connor, J. and Swardson, M.A., Measures and ideals of C* (X), Papers on general topology and applications, 80–91, Ann. New York Acad. Sci., 704, New York Acad. Sci., New York, 1993.

    Google Scholar 

  14. Fast, H., Sur la convergence statistique. Colloq. Math 2 (1951), 241–244.

    MathSciNet  MATH  Google Scholar 

  15. Freedman, A. R. and Sember, J.J., Densities and summability. Pacific J. Math 95 (1981), 293–305.

    MathSciNet  MATH  Google Scholar 

  16. Fridy, J., On statistical convergence, Analysis 5 (1985), 301–313.

    MathSciNet  MATH  Google Scholar 

  17. Fridy, J., Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187–1192.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fridy, J. and Miller, H.I., A matrix characterization of statistical convergence, Analysis 11 (1991), 59–66.

    MathSciNet  MATH  Google Scholar 

  19. Fridy, J. and Orhan, C., Lacunary Statistical Convergence, Pacific Journal of Math., 160 (1993), 43–51.

    MathSciNet  MATH  Google Scholar 

  20. Fridy, J. and Orhan, C., Lacunary Statistical Summability, Journal of Mathematical Analysis and Applications, Vol. 173 (1991), no. 2, 497–504.

    Article  MathSciNet  Google Scholar 

  21. Fridy, J. and Orhan, C., Statistical Limit Superior and Limit Inferior, Proc. Amer. Math. Soc., to appear.

    Google Scholar 

  22. Fridy, J.;Orhan, C., Statistical core theorems, J. Math. Anal. Appl. 208 (1997), no. 2, 520–527.

    Article  MathSciNet  MATH  Google Scholar 

  23. Henriksen, M., Multiplicative summability methods and the Stone- Čech compactification, Math. Z. 71 (1959), 427–435.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hill, J.D. and Sledd, W.T., Approximation in bounded summability fields, Canad. J. Math. 20 (1968), 410–415.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kline, J., The T-statistically convergent sequences are not an FK space, Internat. J. Math. Math. Sci. 18 (1995), no. 4, 825–827.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kline, J. Statistical convergence and densities generated by sequences of measures, Ph.D. dissertation, Ohio University, 1995.

    Google Scholar 

  27. Knopp, K., Zur Theorie de Limitierungsverfahren (Erste Mitteiiung), M. Zeit. 31 (1930), 115–127.

    Google Scholar 

  28. Kolk, E., Matrix summability of statistically convergent sequences. Analysis 13 (1993), no. 2, 497–504.

    MathSciNet  Google Scholar 

  29. Kolk, E., The statistical convergence in Banach spaces, Tartu Ul. Toimetised No. 928 (1991), 41–52.

    MathSciNet  Google Scholar 

  30. Maddox, I.J., Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), 141–145.

    Article  MathSciNet  MATH  Google Scholar 

  31. Maddox, I.J., A tauberian theorem for statistical convergence, Math. Proc. Camb. Phil. Soc. 106 (1989), 277–280.

    Article  MathSciNet  MATH  Google Scholar 

  32. Miller, H., A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995) no. 5, 1811–1819.

    Article  MathSciNet  MATH  Google Scholar 

  33. Phelps, R.R., The range of Tf for certain linear operators T, Proc. Amer. Math. Soc. 16 (1965), 381–382.

    MathSciNet  MATH  Google Scholar 

  34. Rainwater, J., Regular matrices with nowhere dense support, Proc. Amer. Math. Soc. 29 (1971), 90–91.

    Article  MathSciNet  Google Scholar 

  35. Savac, E.; Faith, N, On σ-statistically convergence and lacunary σ statistically convergence. Math. Slovaca 43 (1993), no. 3, 309–315.

    MathSciNet  Google Scholar 

  36. Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), No. 2, 139–150.

    MathSciNet  MATH  Google Scholar 

  37. Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Connor, J. (1999). A topological and functional analytic approach to statistical convergence. In: Bray, W.O., Stanojević, Č.V. (eds) Analysis of Divergence. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2236-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2236-1_23

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7467-4

  • Online ISBN: 978-1-4612-2236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics