Skip to main content

Regularly bounded functions and Hardy’s inequality

  • Chapter
Analysis of Divergence

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 503 Accesses

Abstract

We consider Hardy’s inequality

$$\int\limits_{0}^{\infty } {{{{\left( {\frac{1}{t}\int\limits_{0}^{t} F (s)ds} \right)}}^{p}}} W(t)dt \leqslant C\int\limits_{0}^{\infty } {{{F}^{P}}} (t)W(t)dt $$

where W, a positive function, is the weight and 1 ≤ p < ∞. In [6, Th. 330] this inequality is given with the weight W(t) = t α, for 0 < α < p - 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aljancic, A. and Arandjelovic, D. O-regularly varying functions, Publ. Inst. Math. (Beograd), 22 (36) 1977, 5–22.

    Google Scholar 

  2. Andersen, K. Weighted generalized Hardy inequalities for non-increasing functions, Can. J. Math. 43 1991, 1121–1135.

    Article  MATH  Google Scholar 

  3. Arino, M.M. and Muckenhoupt, B. Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 1990, 727–735.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bingham, N.H., Göldie, C.M. and J.L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  5. Geluk, J.L. and De Haan, L., Regular Variation, Extensions and Tauberian Theorems, CWI Tract, 40, Stichting Mathematish Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1987.

    MATH  Google Scholar 

  6. Hardy, G., Littlewood, J. and Polya, G., Inequalities, Cambridge University Press, 1952.

    MATH  Google Scholar 

  7. Muckenhoupt, B., Hardy’s inequality with weights, Studia Math. 44 1972, 31–38.

    MathSciNet  MATH  Google Scholar 

  8. Sawyer, E. Weighted inequalities for the two-dimensional Hardy operator, Studia Math. 82 1985, 1–16.

    MathSciNet  MATH  Google Scholar 

  9. Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematics 508, Springer, 1976.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Ostrogorski, T. (1999). Regularly bounded functions and Hardy’s inequality. In: Bray, W.O., Stanojević, Č.V. (eds) Analysis of Divergence. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2236-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2236-1_19

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7467-4

  • Online ISBN: 978-1-4612-2236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics