Skip to main content

Global Change and Disturbance in Southern Forest Ecosystems

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 128))

Abstract

Global change is apt to introduce a variety of perturbations in forests of the southern United States (Figure 40.1). The consequences will vary depending upon characteristics of the perturbations and the ecosystem. Perturbations of high intensity but low frequency (e.g., fires, hurricanes, and regional epidemics of southern pine beetles) can “result in the sudden mortality of biomass in a community” and be described as disturbances (Huston 1994). At the other extreme, perturbations of low intensity but high frequency (e.g., changes in average temperature, elevated carbon dioxide (CO2), and atmospheric nitrogen deposition) tend to exert sustained but low intensity pressures on ecosystems and are sottletimes referred to as “stress” (Underwood, 1989; Winner, 1994; Milchunas and Lauenroth, 1995), but the effects are not necessarily negative (Teskey, see Chapter 8).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JC, Foltz JL, Dixon WN, Liebhold AM, Colbert JJ, Regniere J, Gray DR, Wilder JW, Christie I (1993) Will the gypsy moth become a pest in Florida? Flor Entom 76:102–113.

    Article  Google Scholar 

  • Attiwill PM (1994) The disturbance of forest ecosystems: The ecological basis for conservative management. For Ecol Manage 63:247–300.

    Article  Google Scholar 

  • Ayres MP (1993) Global change, plant defense, and herbivory. In Kareiva PM, Kingsolver JG, Huey RB (Eds) Biotic interactions and global change. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Ayres MP, Scriber JM (1994) Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecol Mono 64:465–482.

    Article  Google Scholar 

  • Bazzaz FA (1983) Characteristics of populations in relation to disturbance in natural and man-modified ecosystems. In Mooney HA, Godron M (Eds) Disturbance and ecosystems: Components of response. Heidelberg, New York.

    Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Ann Rev Ecol System 21:167–196.

    Article  Google Scholar 

  • Beal JA (1933) Temperature extremes as a factor in the ecology of the southern pine beetle. J For 31:329–336.

    Google Scholar 

  • Bryant JP, Chapin FS, III, Reichardt PB, Clausen TP (1987) Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia 72:510–514.

    Article  Google Scholar 

  • Clark JS (1991) Disturbance and tree life history on the shifting mosaic landscape. Ecol 72:1102–1118.

    Article  Google Scholar 

  • Cohen Y, Pastor J (1991) The responses of a forest model to serial correlations of global warming. Ecol 72:1161–1165.

    Article  Google Scholar 

  • Coleman JM (1988) Climatic warming and increased summer aridity in Florida, U.S.A. Clim Change 12:165–178.

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS. III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899.

    Article  PubMed  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rainforests and coral reefs. Science 199:1302–1309.

    Article  PubMed  CAS  Google Scholar 

  • Cottingham KL, Carpenter SR (1994) Predictive indices of ecosystem resilience in models of north temperate lakes. Ecol 75:2127–2138.

    Article  Google Scholar 

  • Dayton PK, Tegner MJ, Parnell PE, Edwards PB (1992) Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol Mono 62:421–445.

    Article  Google Scholar 

  • Diaz MF, Quayle RG (1980) The climate of the United States since 1895: Spatial and temporal changes. Mon Wea Rev 108:246–266.

    Google Scholar 

  • Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326:483–485.

    Article  Google Scholar 

  • Frelich LE, Lorimer CG (1991) Natural disturbance regimes in hemlock-hardwood forests of the upper Great Lakes region. Ecol Mono 61:145–164.

    Article  Google Scholar 

  • Gates DM (1990) Climate change and forests. Tree Physiol 7:1–5.

    PubMed  Google Scholar 

  • Glitzenstein JS, Harcombe PA, Streng DR (1986) Disturbance, succession, and maintenance of species diversity in an east Texas forest. Ecol Mono 56:243–258.

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan S, Daube BC, Wofsky SC (1996) Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271:1576–1578.

    Article  CAS  Google Scholar 

  • Hogenbirk JC, Wein RW (1992) Temperature effects on seedling emergence from boreal wetland soils: Implications for climate change. Aqua Bot 45:361–373.

    Article  Google Scholar 

  • Huston MA (1979) A general hypothesis of species diversity. Am Natur 113:81–101.

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity: The coexistence of species on changing landscapes. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Jarrell JD, Elsberry RL (1994) The effect of global climate on tropical cyclones. Paper presented at the 5th Global Warming Conference, San Francisco, CA.

    Google Scholar 

  • Johnson RH, Lincoln DE (1991) Sagebrush carbon allocation patterns and grasshopper nutrition: The influence of CO2 enrichment and soil mineral nutrition. Oecologia 87:127–134.

    Article  Google Scholar 

  • Jordan DN, Lockaby BG (1990) Time series modelling of relationships between climate and long-term radial growth of loblolly pine. Can J For Res 20:738–742.

    Article  Google Scholar 

  • Knox JC (1993) Large increases in flood magnitude in response to modest changes in climate. Nature 361:430–432.

    Article  Google Scholar 

  • Laine K, Henttonen H (1987) Phenolic/nitrogen ratios in the blueberry Vaccinium myrtillus in relation to temperature and microtine density in Finnish Lapland. Oikos 50:389–395.

    Article  Google Scholar 

  • Larsen JB (1995) Ecological stability of forests and sustainable silviculture. For Ecol Manage 73:85–96.

    Article  Google Scholar 

  • Larsson S, Wiren A, Lundgren L, Ericsson T (1986) Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola (Coleoptera). Oikos 47:205–210.

    Article  CAS  Google Scholar 

  • Lindroth RL, Kinney KK, Platz CL (1993) Responses of deciduous trees to elevated atmospheric carbon dioxide: Productivity, phytochemistry, and insect performance. Ecol 74:763–777.

    Article  CAS  Google Scholar 

  • Lorimer CG (1980) Age structure and disturbance history of a southern Appalachian virgin forest. Ecol 61:1169–1184.

    Article  Google Scholar 

  • Lorio PL, Jr. (1986) Growth-differentiation balance: A basis for understanding southern pine beetle-tree interactions. For Ecol Manage 14:259–273.

    Article  Google Scholar 

  • Lorio PL, Jr. (1993) Environmental stress and whole-tree physiology. In Schowalter TD, Filip GM (Eds) Beetle-pathogen interactions in conifer forests. Academic Press, London.

    Google Scholar 

  • Luken JO, Hinton AC, Baker DG (1992) Response of woody plant communities in power-line corridors to frequent anthropogenic disturbance. Ecol Appl 2:356–362.

    Article  Google Scholar 

  • Meehl GA, Washington WM (1993) South Asian summer monsoon variability in a model with doubled atmospheric carbon dioxide concentration. Science 260:1101–1104.

    Article  PubMed  CAS  Google Scholar 

  • Menges ES, Loucks OL (1984) Modeling a disease-caused patch disturbance: Oak wilt in the midwestern United States. Ecol 65:487–498.

    Article  Google Scholar 

  • Miao SL, Bazzaz FA (1990) Responses to nutrient pulses of two colonizers requiring different disturbance frequencies. Ecol 71:2166–2178.

    Article  Google Scholar 

  • Milchunas DG, Lauenroth WK (1995) Inertia in plant community structure: State changes after cessation of nutrient-enrichment stress. Ecol Appl 5:452–458.

    Article  Google Scholar 

  • Mladenoff DJ, White MA, Pastor J, Crow TR (1993) Comparing spatial pattern in unaltered old-growth and disturbed forest landscapes. Ecol Appl 3:294–306.

    Article  Google Scholar 

  • Mole S, Ross JAM, Waterman PG (1988) Light-induced variation in phenolic levels in foliage of rain-forest plants. I. Chemical changes. J Chem Ecol 14:1–21.

    Article  CAS  Google Scholar 

  • Moore JC, De Ruiter PC, Hunt HW (1993) Influence of productivity on the stability of real and model ecosystems. Science 261:906–908.

    Article  PubMed  CAS  Google Scholar 

  • Moser JC, Thompson WA (1986) Temperature thresholds related to flight of Dendroctonus frontalis Zimm. (Col.: Scolytidae). Agron 6:905–910.

    Article  Google Scholar 

  • Ollinger SV, Aber JD, Lovett GM, Millham SE, Lathrop RG, Ellis JM (1993) A spatial model of atmospheric deposition for the northeastern U.S. Ecol Appl 3:459–472.

    Article  Google Scholar 

  • Overpeck JT (1996) Warm climate surprises. Science 271:1820–1821.

    Article  CAS  Google Scholar 

  • Overpeck JT, Bartlein PJ (1989) Assessing the response of vegetation to future climate change: Ecological response surfaces and paleoecological model validation. In Smith JB, Tirpak DA (Eds) The potential effects of global climate change on the United States-Report to Congress. Volume D-Forests. USEPA, Washington, DC.

    Google Scholar 

  • Overpeck JT, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343:51–53.

    Article  Google Scholar 

  • Parker IM, Mertens SK, Schemske DW (1993) Distribution of seven native and two exotic plants in a tallgrass prairie in southeastern Wisconsin The importance of human disturbance. Am Midlandnat 130:43–55.

    Article  Google Scholar 

  • Pastor J, Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334:55–58.

    Article  Google Scholar 

  • Putz FE, Sharitz RR (1991) Hurricane damage to old-growth forest in Congaree Swamp National Monument, South Carolina, U.S.A. Can J For Res 21:1765–1770.

    Article  Google Scholar 

  • Reams GA, Van Deusen PC (1993) Synchronic large-scale disturbances and red spruce growth decline. Can J For Res 23:1361–1374.

    Article  Google Scholar 

  • Reeve JR, Ayres MP, Lorio PL, Jr. (1995) Host suitability, predation, and bark beetle population dynamics. In Cappuccino N, Price PW (Eds) Population dynamics: New approaches and synthesis. Academic Press, San Diego, CA.

    Google Scholar 

  • Rind DR, Goldberg R, Hansen J, Rosensweig C, Ruedy R (1990) Potential evapotranspiration and the likelihood of future drought. J Geophys Res 95(D7):9983–10004.

    Article  Google Scholar 

  • Robertson GP, Crum JR, Ellis BG (1993) The spatial variability of soil resources following long-term disturbance. Oecologia 96:451–456.

    Article  Google Scholar 

  • Schmidt H, von Storch H (1993) German Bight storms analyzed. Nature 365:791.

    Article  Google Scholar 

  • Sheffield RM and Thompson MT (1992) Hurricane Hugo: Effects on South Carolina’s forest resource. USDA, For Serv, Southeast For Exper Stat Res Pap SE-284.

    Google Scholar 

  • Showalter TD, Turchin P (1993) Southern pine beetle infestation development: Interaction between pine and hardwood basal areas. For Science 39:201–210.

    Google Scholar 

  • Spurr SH (1956) Natural restocking of forests following the 1938 hurricane in central New England. Ecol 37(3):443–451.

    Article  Google Scholar 

  • Stout I J, Marion WR (1993) Pine flatwoods and xeric pine forests of the southern (lower) coastal plain. In Martin WH, Boyce SG, Echternacht AC (Eds) Biodiversity of the southeastern United States: Lowland terrestrial communities. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Tilman D (1996) Biodiversity: Population versus ecosystem stability. Ecol 77:350–363.

    Article  Google Scholar 

  • Turner MG (1987) Landscape heterogeneity and disturbance. Springer-Verlag, New York.

    Book  Google Scholar 

  • Underwood AJ (1989) The analysis of stress in natural populations. Biol J Linnean Soc 37:51–78.

    Article  Google Scholar 

  • Wagner TL, Gagne J A, Sharpe PJH, Coulson RN (1984) A biophysical model of southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), development. Ecol Model 21:125–147.

    Article  Google Scholar 

  • Ware S, Frost C, Doerr PD (1993) Southern mixed hardwood forest: The former longleaf pine forest. In Martin WH, Boyce SG, Echternacht AC (Eds) Biodiversity of the southeastern United States: Lowland terrestrial communities. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Wigley TML (1985) Impact of extreme events. Nature 316:106–107.

    Google Scholar 

  • Wigley TML, Jones PD, Kelly PM (1980) Scenario for a warm, high-CO2 world. Nature 283:17–21.

    Article  CAS  Google Scholar 

  • Wilson SD, Keddy PA (1986) Species competitive ability and position along a natural stress/disturbance gradient. Ecol 67:1236–1242.

    Article  Google Scholar 

  • Winner WE (1994) Mechanistic analysis of plant responses to air pollution. Ecol Appl 4:651–661.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ayres, M.P., Reams, G.A. (1998). Global Change and Disturbance in Southern Forest Ecosystems. In: Mickler, R.A., Fox, S. (eds) The Productivity and Sustainability of Southern Forest Ecosystems in a Changing Environment. Ecological Studies, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2178-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2178-4_40

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7446-9

  • Online ISBN: 978-1-4612-2178-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics