Skip to main content

r-Fold Multivectors and Superenergy

  • Chapter
Clifford Algebras

Part of the book series: Progress in Mathematical Physics ((PMP,volume 34))

  • 1024 Accesses

Abstract

A general structure combining Grassmann, Clifford and tensor products is presented. The r-fold multivectors provide the basis for the natural extension of Grassmann and Clifford algebras when several geometric entities are multilinearly related. Any tensor can be organized and understood as an r-fold multivector when its antisymmetries are taken into account. The r-fold Clifford algebra is contrasted with the multiparticle geometric algebra. The application of r-fold Clifford algebra to the study of superenergy tensors in physics is shown to provide their simplest definition. In addition, it constitutes a most efficient tool for obtaining and proving their essential properties, such as dominant positivity and conditions for their conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J.L. Doran, Geometric Algebra and its Application to Mathematical Physics. Ph.D. thesis, University of Cambridge, 1994.

    Google Scholar 

  2. J.M. Pozo and J.M. Parra, Positivity and conservation of superenergy tensors. Class. Quantum Grav. 19, 967–983, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.M.M. Senovilla, Super-energy tensors. Class. Quantum Grav. 17, 2799–2842, 2000. Preprint gr-qc/9906087.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Bel, Les états de radiation et le problème de l’ énergie en relativité générale. Cahiers de Physique 16, 59–80, 1962. English translation: Gen. Ref. Grav. 32, 2047-78 (2000). And independently, I. Robinson unpublished 1959 (see also I. Robinson, On the Bel-Robinson tensor, Class. Quantum Grav. 14, A331-A333, 1997)

    MathSciNet  Google Scholar 

  5. M. Riesz, Clifford Numbers and Spinors. The Inst. for Fluid Dynamics and Applied Math., Lecture Series 38. Univ. of Maryland, University Park, 1958. (Reprinted as facsimile (Dordrecht: Kluwer 1993) ed. E.F. Bolinder and P. Lounesto).

    MATH  Google Scholar 

  6. W.K. Clifford, Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 350–358, 1878.

    Article  MathSciNet  Google Scholar 

  7. F.J. Chinea, A Clifford algebra approach to general relativity. Gen. Rei. Grav. 21 (1), 21–44, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Dimakis and F. Müller-Hoissen, Clifform calculus with applications to classical field theories. Class. Quantum Grav. 8, 2093–2132, 1991.

    Article  MATH  Google Scholar 

  9. J.M. Parra and J.M. Pozo, Einstein Equations with Spacetime Geometric Clifford Algebra, 194–197. In Bona et al. [30], 1998.

    Google Scholar 

  10. A. Lasenby, S. Gull and C. Doran, STA and the interpretation of quantum mechanics, In Clifford (Geometric) Algebras with Applications to Physics, Mathematics, and Engineering. W.E. Baylis (Editor), Birkhäuser, Boston, 1996, pp. 147–169. 1996.

    Google Scholar 

  11. S.S. Somaroo, A.N. Lasenby, and C.J.L. Doran, Geometric algebra and the causal approach to multiparticle quantum mechanics. J. Math. Phys. 40, 3327–3340, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.M.M. Senovilla, Remarks on superenergy tensors, 175–182. In Martín et al. [31], 1999. (Senovilla J.M.M. 1999 Preprint gr-qc/9901019).

    Google Scholar 

  13. G.T. Horowitz and B.G. Schmidt, Proc. R. Soc. A 381, 215, 1982.

    MathSciNet  Google Scholar 

  14. M.A.G. Bonilla and J.M.M. Senovilla, Some properties of the Bel and Bel-Robinson tensors. Gen. Rel. Grav. 29, 91–116, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Chevreton, Sur le tenseur de superénergie du champ électromagnétique. Nuovo Cimento 34, 901–913, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Bergqvist and M. Ludvigsen, Quasi-local momentum near a point. Class. Quantum Grav. 4, L29-L32, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  17. L.B. Szabados, On certain quasi-local spin-angular momentum expressions for small spheres. Class. Quantum Grav. 16, 2889–2904, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.D. Brown, S.R. Lau, and J.W. York, Canonical quasilocal energy and small spheres. Phys. Rev. D 59, 064028, 1999.

    Article  MathSciNet  Google Scholar 

  19. J.M.M. Senovilla, (super)n-energy for arbitrary fields and its interchange: conserved quantities. Mod. Phys. Lett. 15, 159–166, 2000. Preprint gr-qc/9905057.

    Article  MathSciNet  Google Scholar 

  20. D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space. Princeton Univ. Press, Princeton, 1993.

    MATH  Google Scholar 

  21. G. Bergqvist and J.M.M. Senovilla, Null cone preserving maps, causal tensors and algebraic Rainich theory. Class. Quantum Grav. 18, 5299–5325, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Garcia-Parrado and J.M.M. Senovilla, Causal relationship: a new tool for the causal characterization of Lorentzian manifolds. Class. Quant. Grav. 20, 625–664, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  23. G.W. Gibbons, Quantum gravity/strings/m-theory as we approach the 3rd millennium. In N Dadhich and J Narlikar, editors, Gravitation and Relativity: At the turn of the Millenium (Proc. of the GR-15 Conference), pp. 259–280, Pune, India, 1998. IUCAA. gr-qc/9803065.

    Google Scholar 

  24. S. Deser, The immortal Bel-Robinson tensor, 35–43. In Martín et al. [31], 1999.

    Google Scholar 

  25. G. Bergqvist, Positivity of general superenergy tensors. Commun. Math. Phys. 207 467–479, 1999.

    Article  MathSciNet  Google Scholar 

  26. J.M. Pozo and J.M. Parra, Clifford algebra approach to superenergy tensors, 283–287. In Ibáñez (32], 2000. Preprint gr-qc/9911041).

    Google Scholar 

  27. M. Riesz, Sur certain notions fondamentales en theorié quantique relativiste. In C. R. 10e Congrès Math. Scandinaves (Copenhagen), pp. 123–148, 1946. Marcel Riesz Collected Papers ed. L. Gårding and L. Hörmander (Berlin: Springer-Verlag 1988), 545–570.

    Google Scholar 

  28. D. Hestenes, Space-Time Algebra. Gordon & Breach, New York, 1966.

    MATH  Google Scholar 

  29. P. Teyssandier, Superenergy tensors for a massive scalar field, 319–324. In Ibáñez [32], 2000. (see also Teyssandier P 1999 Preprint gr-qc/9905080).

    Google Scholar 

  30. C. Bona, J. Carot, L. Mas, and J. Stela, editors, Analytical and Numerical Approaches to Relativity: Sources of Gravitational Radiation, Proc. of the Spanish Relativity Meeting, ERE97 (Palma de Mal/orca). Universitat de les Illes Balears, 1998.

    Google Scholar 

  31. J. Martín, E. Ruiz, F. Atrio, and A. Molina, editors, Relativity and Gravitation in General, Proc. of the Spanish Relativity Meeting in Honour of the 65 th Birthday of L. Bel, ERE98 (Salamanca). World Scientific, Singapore, 1999.

    Google Scholar 

  32. J. Ibáñez, editor, Recent Developments in Gravitation, Proc. of the Spanish Relativity Meeting, ERE99 (Bilbao). Universidad del Pais Vasco, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

Pozo, J.M., Parra, J.M. (2004). r-Fold Multivectors and Superenergy. In: Abłamowicz, R. (eds) Clifford Algebras. Progress in Mathematical Physics, vol 34. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2044-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2044-2_33

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3525-1

  • Online ISBN: 978-1-4612-2044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics