Skip to main content

Nonisothermal Simultaneous Saccharification and Fermentation for Direct Conversion of Lignocellulosic Biomass to Ethanol

  • Chapter
Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

Abstract

The enzymatic reaction in the simultaneous saccharification and fermentation (SSF) is operated at a temperature much lower than its optimum level. This forces the enzyme activity to be far below its potential, consequently raising the enzyme requirement. To alleviate this problem, a nonisothermal simultaneous saccharification and fermentation process (NSSF) was investigated. The NSSF is devised so that saccharification and fermentation occur simultaneously, yet in two separate reactors that are maintained at different temperatures. Lignocellulosic biomass is retained inside a column reactor and hydrolyzed at the optimum temperature for the enzymatic reaction (50°C). The effluent from the column reactor is recirculated through a fermenter, which runs at its optimum temperature (20–30°C). The cellulase enzyme activity is increased by a factor of 2–3 when the hydrolysis temperature is raised from 30 to 50°C The NSSF process has improved the enzymatic reaction in the SSF to the extent that it reduces the overall enzyme requirement by 30–40%. The effect of temperature on β-glucosidase activity was the most significant among the individual cellulase compounds. Both ethanol yield and productivity in the NSSF are substantially higher than those in the SSF at the enzyme loading of 5 IFPU/g glucan. With 10 IFPU/g glucan, improvement in productivity was more discernible for the NSSF. The terminal yield attainable in 4 d with the SSF was reachable in 40 h with the NSSF.

Author to whom all correspondence and reprint requests should be addressed. E-mail: yylee@eng.auburn.edu

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S., and Takagi, M. (1991), Biotechnol. Bioeng. 37, 93–96.

    Article  CAS  Google Scholar 

  2. Grohmann, K. (1993), in Bioconversion of Forest and Agricultural Plant Residues, Saddler, J. N., ed., CAB International, Wallingford, pp. 183–210.

    Google Scholar 

  3. Spindler, D. D., Wyman, C. E., and Grohmann, K. (1991), Appl. Biochem. Biotechnol. 28/29, 773–786.

    Article  Google Scholar 

  4. Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992), Appl. Biochem. Biotechnol. 34/35, 639–649.

    Article  Google Scholar 

  5. Ballesteros, I., Ballesteros, M., Cabanas, A., Carrasco, J., Martic, C., Negro, M. J., Saez, F., and Saez, R. (1991), Appl. Biochem. Biotechnol. 28/29, 307–315.

    Article  Google Scholar 

  6. Ballesteros, I., Oliva, J. M., Ballesteros, M., and Carrasco, J. (1993), Appl. Biochem. Biotechnol. 39/40, 201–211.

    Article  Google Scholar 

  7. Spindler, D. D., Wyman, C. E., Mohagheghi, A., and Grohmann, K. (1988), Appl. Biochem. Biotechnol. 17, 279–293.

    Article  CAS  Google Scholar 

  8. Spindler, D. D., Wyman, C. E., and Grohmann, K. (1989), Biotechnol. Bioeng. 34, 189–195.

    Article  CAS  Google Scholar 

  9. Barron, N., Marchant, R., McHale, L., and McHale, A. P. (1995), Appl. Microbiol. Biotechnol. 43, 518–520.

    Article  CAS  Google Scholar 

  10. Ward, C., Nolan, A. M., O’ Hanlon, K., McAree, T., Barron, N., McHale, L., and McHale, A. P. (1995), Appl. Microbiol. Biotechnol. 43, 408–411.

    Article  CAS  Google Scholar 

  11. Viikari, V. L., Nybergh, P., and Linko, M. (1980), In Advances in Biotechnology, vol. 2, Moo-Yooung M., ed., Pergamon, New York, 137–142.

    Google Scholar 

  12. Spindler, D. D. and Emert, G. H. (1986), Biotechnol. Bioeng. 28, 115–118.

    Article  Google Scholar 

  13. Saddler, J. N., Mes-Hartree, M., Yu, E. K. C., and Brownell, H. H. (1983), Biotechnol. Bioeng. Symp. 13, 225–238.

    CAS  Google Scholar 

  14. Oh, K. K., Kim, T. Y., Jeong, Y. S., and Hong, S. I. (1996), in Renewable Energy, vol. 2, Sayigh, A. A. A., ed., Pergamon, New York, 962–970.

    Google Scholar 

  15. Huang, S. Y. Chen, C. J. (1988), J. Fer. Technol. 66, 509–516.

    Article  CAS  Google Scholar 

  16. Spindler, D. D., Wyman, C. E., Grohmann, K., and Mohagheghi A. (1989), Appl. Biochem. Biotechnol. 20/21, 529–540.

    Article  Google Scholar 

  17. Philippidis, G. P., Spindler, D. D., and Wyman, C. E. (1992), Appl. Biochem. Biotechnol. 34/35, 543–556.

    Article  Google Scholar 

  18. Shah, M. M., Song, S. K., Lee, Y. Y., and Torget, R. (1991), Appl. Biochem. Biotechnol. 28/29, 99–109.

    Article  Google Scholar 

  19. Torget, R., Hatzis, C., Hayward, T. K., Hsu, T.-A., and Philippidis, G. P. (1996), Appl. Biochem. Biotechnol. 58/59, 85–101.

    Article  Google Scholar 

  20. Wu, Z., and Lee, Y. Y. (1997), Appl. Biochem. Biotechnol. 63/65, 21–34.

    Article  Google Scholar 

  21. Mamma, D., Koullas, D., Fountoukids, G., Kekos, D., Macris, B. J., and Koukios, E. (1995), AIChE Annual Meeting, Miami Beech, FL.

    Google Scholar 

  22. Katzen, R., and Fowler, D. E. (1994), Appl. Biochem. Biotechnol. 45/46, 697–707.

    Article  Google Scholar 

  23. Wright, J. D., Power, A. J., and Douglas, L. J. (1987), Biotechnol. Bioeng. Symp. 17, 285–302.

    Google Scholar 

  24. Hinman, N. D., Schell, D. J., Riley, C., J., Bergeron, P. W., and Walter, P. J. (1992), Appl. Biochem. Biotechnol. 34/35, 639–649.

    Article  Google Scholar 

  25. Philippidis, G. P. and Smith, T. K. (1995), Appl. Biochem. Biotechnol. 51/52, 117–124.

    Article  CAS  Google Scholar 

  26. Iyer, P. V., Wu, Z., Kim, S. B., and Lee, Y. Y. (1996), Appl. Biochem. Biotechnol. 57/58, 121–132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, Z., Lee, Y.Y. (1998). Nonisothermal Simultaneous Saccharification and Fermentation for Direct Conversion of Lignocellulosic Biomass to Ethanol. In: Finkelstein, M., Davison, B.H. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1814-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1814-2_44

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7295-3

  • Online ISBN: 978-1-4612-1814-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics