Skip to main content

Chaos Near Resonance

  • Book
  • © 1999

Overview

Part of the book series: Applied Mathematical Sciences (AMS, volume 138)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

Resonances are ubiquitous in dynamical systems with many degrees of freedom. They have the basic effect of introducing slow-fast behavior in an evolutionary system which, coupled with instabilities, can result in highly irregular behavior. This book gives a unified treatment of resonant problems with special emphasis on the recently discovered phenomenon of homoclinic jumping. After a survey of the necessary background, a general finite dimensional theory of homoclinic jumping is developed and illustrated with examples. The main mechanism of chaos near resonances is discussed in both the dissipative and the Hamiltonian context. Previously unpublished new results on universal homoclinic bifurcations near resonances, as well as on multi-pulse Silnikov manifolds are described. The results are applied to a variety of different problems, which include applications from beam oscillations, surface wave dynamics, nonlinear optics, atmospheric science and fluid mechanics. The theory is further used to study resonances in Hamiltonian systems with applications to molecular dynamics and rigid body motion. The final chapter contains an infinite dimensional extension of the finite dimensional theory, with application to the perturbed nonlinear Schrödinger equation and coupled NLS equations.

Reviews

"An extensive bibliography and the many examples make this clearly-written book an excellent introduction to these techniques for identifying chaos in perturbations of systems with resonance."
Applied Mechanics Reviews, Vol. 53/4, April 2000


"Haller makes a point of wanting to see dynamical systems theory fulfil "its long-standing promise to solve real-life problems". His book, through a wealth of detailed examples, delivers on this promise, and is certain ti become a standard text in this area. In particular, it is an excellent introduction to this research area, and contains a wealth of bibliographical and historical detail.
Matthew Nicol, Bulletin of the LMS, No. 162, Vol. 33/3, May 2001

Authors and Affiliations

  • Division of Applied Mathematics, Brown University, Providence, USA

    G. Haller

Bibliographic Information

Publish with us