Skip to main content

Solution and Stability for a Simple Dynamic Bottleneck Model

  • Conference paper
Advances in Dynamic Games and Applications

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 5))

  • 547 Accesses

Abstract

Previous authors have considered the basic bottleneck model with one origin, one destination, and one link and shown that an equilibrium exists for the time of usage. In this paper we briefly review these results and introduce several intuitive day-to-day adjustment processes. Using numerical examples, we show that these adjustment processes never converge toward the solution of the basic bottleneck model. However, convergence occurs when the amount of heterogeneity in the driver’s behavior is large enough. We hope that these results will provide some useful insights to researchers developing large-scale dynamic network equilibrium models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., A. de Palma, and J.-F. Thisse. Discrete Choice Theory of Product Differentiation. MIT Press, Cambridge, MA, 1992.

    MATH  Google Scholar 

  2. Anderson, S., J. Goeree, and C. Holt. Stochastic Game Theory: Adjustment to Equilibrium Under Bounded Rationality. Mimeo, Department of Economics, University of Virginia, 1997.

    Google Scholar 

  3. Arnott, R., A. de Palma, and R. Lindsey. Economics of a Bottleneck. Queen’s University, Institute of Economic Research, Discussion paper 636, 1985.

    Google Scholar 

  4. Arnott, R., A. de Palma, and R Lindsey. Economics of a Bottleneck. Journal of Urban Economics, 111–130, 1993.

    Google Scholar 

  5. Arnott, R, A. de Palma, and R. Lindsey. A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand. American Economic Review, 83, 161–179, 1993.

    Google Scholar 

  6. Arnott, R, A. de Palma, and R. Lindsey. Recent Developments in the Bottleneck Model. In: Road Pricing, Traffic Congestion and the Environment (K. Button and E. Verhoef, eds.). Elgar’s Economics. 79–110, 1998.

    Google Scholar 

  7. Arnott, R., A. de Palma, and R. Lindsey. Congestion: A Dynamic Approach. MIT Press, Cambridge, MA, in press.

    Google Scholar 

  8. Arnott, R., A. de Palma, and F. Marchai. From W. Vickrey to Large-Scale Dynamic Models. Mimeo, ITEP, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1998.

    Google Scholar 

  9. Beckmann, M., C. McGuire, and C. Winsten. Studies in Economics of Transportation. Yale University Press, New Haven, 1956.

    Google Scholar 

  10. Bonsall, P., M. Taylor, and W. Young. Understanding Traffic systems: Data, Analysis and Presentation. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  11. Ben-Akiva, M., A. de Palma, and P. Kanaroglou. Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates. Transportation Science, 20 (2), 164–181, 1986.

    Article  Google Scholar 

  12. de Palma, A., V. Ginsburgh, Y. Y. Papageorgiou, and J. F. Thisse. The Principle of Minimum Differentiation Holds under Sufficient Heterogeneity. Econometrica, 53, 767–781,1985.

    Article  MathSciNet  MATH  Google Scholar 

  13. de Palma, A., F. Marchai, and Yu. Nesterov. METROPOLIS: a Modular System for Dynamic Traffic Simulation. Transportation Research Record, 1607,178–184,1997.

    Article  Google Scholar 

  14. de Palma, A. and F. Marchai. Evaluation of Activity Schedule Policies with the Use of Innovative Dynamic Traffic Models. In: Traffic and Transportation Studies, Proceedings of ICTTS’98, American Society of Civil Engineers, pp. 791–801,1998.

    Google Scholar 

  15. de Palma A. and Yu. Nesterov. Optimization Formulations and Static Equilibrium in Congested Transportation Networks. Mimeo, CORE, Université Catholique de Louvain, Belgium, 1998.

    Google Scholar 

  16. Emmerink, R. Information and Pricing in Road Transportation. Advance in Spatial Science. Springer-Verlag, Berlin, 1998.

    Book  Google Scholar 

  17. EMME/2: User’s Manual Software Release 7. INRO, Montréal, 1994.

    Google Scholar 

  18. Friesz, T., D. Bernstein, D. Smith, T. Tobin, and B. Wei. A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem. Operations Research, 41,179–191,1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. Glazer, A. and R. Hassin. ?/M/1: On the Equilibrium Distribution of Customers Arrivals. European Journal of Operational Research, 13, 146–150, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  20. Knight, F. Some Fallacies in the Interpretation of Social Costs. Quarterly Journal of Economics, 38, 582–606, 1924.

    Article  Google Scholar 

  21. Laih, C. H. Queuing at a Bottleneck with Single and Multiple Step Tolls. Transportation Research, 28 A, 197–208, 1994.

    Google Scholar 

  22. Nagumey, A. Network Economics: A Variational Inequality Approach. Kluwer Academic, Dordrecht, 1993.

    Google Scholar 

  23. Nesterov, Yu. and A. Nemirovsky. Interior Point Algorithms in Nolinear Optimization. SIAM, Philadelphia, 1994.

    Google Scholar 

  24. Samuelson, L. Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge, MA, 1997.

    MATH  Google Scholar 

  25. Sheffi, Y. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice Hall, Engelwood Cliffs, NJ, 1985.

    Google Scholar 

  26. Small, K. A. The Scheduling of Consumer Activities: Work Trips. American Economic Review, 72,467–479, 1982.

    Google Scholar 

  27. Smith, M. J. Existence and Calculation of Traffic Equilibria. Transportation Research, 17B, 291–303,1983.

    Google Scholar 

  28. Vickrey, W. S. Congestion Theory and Transport Investment. American Economic Review (Papers and Proceedings), 59,414–431,1969.

    Google Scholar 

  29. Wardrop, J. G. Some Theoretical Aspects of Road Traffic Research. Proceedings of the Institution of Civil Engineers, Part II (1), pp. 325–378, 1952.

    Google Scholar 

  30. Wu, J. H., M. Florian, Y. W. Xu, and J. M. Rubio-Ardanaz. A Projection Algorithm for the Dynamic Network Equilibrium Problem. In: Traffic and Transportation Studies. Proceedings of ICTTS’98, American Society of Civil Engineers, pp. 379–390,1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

de Palma, A. (2000). Solution and Stability for a Simple Dynamic Bottleneck Model. In: Filar, J.A., Gaitsgory, V., Mizukami, K. (eds) Advances in Dynamic Games and Applications. Annals of the International Society of Dynamic Games, vol 5. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1336-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1336-9_22

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7100-0

  • Online ISBN: 978-1-4612-1336-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics