
10Mathematical Remarks forNeural
Networks

The following sections treat mathematical topics that were presupposed in the text
(Sect. 10.1 on straight line equations and Sect. 10.2 on regression), or side remarks,
which would have disturbed the flow of the exposition (Sect. 10.3 on activation
transformation in a Hopfield network).

10.1 Equations for Straight Lines

In this section a few important facts about straight lines and their equations have
been collected, which are used in Chap.3 on threshold logic units. More extensive
explanations can be found in any textbook on linear algebra.

Straight lines are commonly described in one of the following forms:

explicit form: g ≡ x2 = bx1 + c
implicit form: g ≡ a1x1 + a2x2 + d = 0
point-direction form: g ≡ x = p + kr
normal form: g ≡ (x − p)n = 0

with the parameters

b : slope of the line
c : intercept
p : position vector of a point of the line (support vector)
r : direction vector of the line
n : normal vector of the line.

It is a disadvantage of the explicit form that straight lines that are parallel to the
x2-axis cannot be represented. All other forms can represent arbitrary lines.

The implicit form and the normal form are closely related to each other, because
the coefficients a1 and a2 of the variables x1 and x2, respectively, are the coordinates
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Fig. 10.1 A straight line and
the parameters describing it

of a normal vector of the line. That is, we may use n = (a1, a2) in the normal form.
Expanding the normal form also shows that d = −pn.

The relations between the parameters of the different forms of stating a straight
line are shown in Fig. 10.1. Particularly important is the vector q, which provides an
interpretation for the parameter d of the implicit form. The vector q is obtained by
projecting the support vector p onto the direction normal to the straight line. This is
achieved with the scalar product. It is

pn = |p ||n| cosϕ.

From the diagram we see that |q | = |p | cosϕ. There fore we have

|q | = |pn|
|n| = |d|

|n| .
Hence |d| measures the distance of the straight line from the origin of the coordinate

system relative to the length of the normal vector. If
√
a21 + a22 = 1, that is, if the

normal vector has unit length, then |d| measures this distance directly. In this case
the normal form is called the Hessian normal form of the line equation.

If one takes into account that pn becomes negative if n does not point away from
the origin (as in the diagram), but toward it, one finally obtains:

q = pn
|n|

n
|n| = −d

|n|
n
|n| .

Note that q always points from the origin to the straight line, regardless of whether
n points toward the origin or away from it. Therefore we can read the location of the
origin from the sign of d:

d = 0 : The straight line contains the origin,
d < 0 : n = (a1, a2) points away from the origin,
d > 0 : n = (a1, a2) points toward the origin.

Of course, we can carry out these computations not only for a support vector p
of the straight line, but for an arbitrary vector x (see Fig. 10.2). Thus we obtain a
vector z that is the projection of the vector x onto the direction normal to the line.
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Fig. 10.2 Determining the
side of straight line on which
a point x lies

By comparing this vector to the vector q considered above, we can determine on
which side of the straight line the point lies that has the position vector x:

A point with position vector x lies on the side of the straight line to which the
normal vector n points, if xn > −d, and on the other side, if xn < −d. If xn = −d,
the point lies on the straight line.

It should be clear that these considerations are not restricted to straight lines,
but can be transferred immediately to planes and hyperplanes. Thus we can easily
determine for them as well on which side a point with given position vector lies.

10.2 Regression

This section recalls the method of least squares, also known as regression, which
is well known in calculus and statistics. It is used to determine best fit straight lines
(regression lines) and generally best fit polynomials (regression polynomials). The
following exposition follows mainly (Heuser 1988).

(Physical) measurement data rarely show the exact relationship of the measured
quantities as it is described by physical laws, since they are inevitably afflicted by
errors. If one wants to determine the relationship of the quantities nevertheless (at
least approximately), one faces the task to find a function that fits the measurement
points as well as possible, so that the measurement errors are somehow “balanced.”
Naturally, in order to achieve this, we should have a hypothesis about the type of
relationship, so that we can choose a function class and thus reduce the problem to
the selection of the parameters of a function of a specific type.

For example, if we expect two quantities x and y to exhibit a linear depen-
dence (for instance, because a scatter plot of the measurement points suggests such
a relationship), we have to determine the parameters a and b of the straight line
y = g(x) = a + bx . However, due to the inevitable measurement errors it will gen-
erally not be possible to find a straight line in such away that all n givenmeasurement
points (xi , yi ), 1 ≤ i ≤ n, lie exactly on this straight line. Rather we have to try to
find a straight line that deviates from the measurement points as little as possible.
Therefore it is plausible to determine the parameters a and b in such a way that the
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sum of the squared differences

F(a, b) =
n∑

i=1

(g(xi ) − yi )
2 =

n∑

i=1

(a + bxi − yi )
2

is minimized. That is, the y-values that can be computed from the line equation
should deviate (in total) as little as possible from the measured values. The reasons
for choosing the squared deviations are basically the same as those given in Sect. 4.3:
in the first place using squares makes the error functions continuously differentiable
everywhere. In contrast to this, the derivative of the absolute value, which would be
an obvious alternative, does not exist/is not continuous at 0. Secondly, squaring the
deviations weights large deviations more heavily than small ones, so that there is a
tendency to avoid individual large deviations from the measured data.1

A necessary condition for a minimum of the error function F(a, b) defined above
is that the partial derivatives of this function w.r.t. the parameters a and b vanish:

∂F

∂a
=

n∑

i=1

2(a + bxi − yi ) = 0 and

∂F

∂b
=

n∑

i=1

2(a + bxi − yi )xi = 0.

From these equations we obtain, after a few simple transformations, the so-called
normal equations

na +
(

n∑

i=1

xi

)
b =

n∑

i=1

yi
(

n∑

i=1

xi

)
a +

(
n∑

i=1

x2i

)
b =

n∑

i=1

xi yi ,

that is, a linear equation systemwith two equations and two unknowns a and b. It can
be shown that this equation system has a unique solution unless the x-values of all
measurement points are identical (that is, unless x1 = x2 = . . . = xn), and that this
solution indeed describes a minimum of the function F (Heuser 1988). The straight
line y = g(x) = a + bx determined in this way is called the best fit (straight) line
or the regression line for the data set (x1, y1), . . . , (xn, yn).

To illustrate the procedure, we consider a simple example. Let the data set consist-
ing of eight data points (x1, y1), . . . , (x8, y8) be given that is shown in the following
table (Heuser 1988) (see also Fig. 10.3):

1Note, however, that this can also be a disadvantage. If the data set contains “outliers” (that is,
measurement values that due to random, disproportionally largemeasurement errors deviate strongly
from the true value), the position of the regression line may be influenced heavily by very few
measurement points (precisely the outliers), which can lead to an unusable result.

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
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Fig. 10.3 An example data
set and a regression line that
was computed with the
method of least squares

x 1 2 3 4 5 6 7 8
y 1 3 2 3 4 3 5 6

In order to set up the system of normal equations, we compute

8∑

i=1

xi = 36,
8∑

i=1

x2i = 204,
8∑

i=1

yi = 27,
8∑

i=1

xi yi = 146.

Thus we obtain the equation system (normal equations)

8a + 36b = 27,

36a + 204b = 146,

which possesses the solution a = 3
4 and b = 7

12 . Therefore the regression line is

y = 3

4
+ 7

12
x .

This line is shown, together with the data points we started from, in Fig. 10.3.
The method we just considered is, of course, not limited to straight lines, but can

be extended at least to polynomials. In this case one tries to find a polynomial

y = p(x) = a0 + a1x + . . . + amx
m

with a given, fixed degreem that approximates the n data points (x1, y1), . . . , (xn, yn)
as well as possible. In this case we have to minimize

F(a0, a1, . . . , am) =
n∑

i=1

(p(xi ) − yi )
2 =

n∑

i=1

(a0 + a1xi + . . . + amx
m
i − yi )

2.

Necessary conditions for a minimum are again that the partial derivatives w.r.t. the
parameters a0 to am vanish, that is,

∂F

∂a0
= 0,

∂F

∂a1
= 0, . . . ,

∂F

∂am
= 0.
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In this way we obtain the system of normal equations (Heuser 1988)

na0 +
(

n∑

i=1

xi

)
a1 + . . . +

(
n∑

i=1

xmi

)
am =

n∑

i=1

yi
(

n∑

i=1

xi

)
a0 +

(
n∑

i=1

x2i

)
a1 + . . . +

(
n∑

i=1

xm+1
i

)
am =

n∑

i=1

xi yi

...
...

...
...(

n∑

i=1

xmi

)
a0 +

(
n∑

i=1

xm+1
i

)
a1 + . . . +

(
n∑

i=1

x2mi

)
am =

n∑

i=1

xmi yi ,

from which the parameters a0 to am can be derived with the usual methods
of linear algebra (Gaussian elimination, Cramer’s rule, inverting the coefficient
matrix, etc.). The resulting polynomial p(x) = a0 + a1x + a2x2 + . . . + amxm is
called best fit polynomial or regression polynomial of degree m for the data
set (x1, y1), . . . , (xn, yn).

Furthermore the method of least squares cannot only be used, as considered up to
now, to compute regression polynomials, butmay aswell be employed to fit functions
with more than one argument. This case is called multiple or multivariate regres-
sion. We consider, as an example, only the special case of multilinear regression
and confine ourselves to a function with two arguments. That is, we consider, how
one can find a best fitting function of the form

z = f (x, y) = a + bx + cy

for a given data set (x1, y1, z1), . . . , (xn, yn, zn) in such away that the sumof squared
errors is minimized. In this case the normal equations are derived in a perfectly
analogous way. We have to minimize

F(a, b, c) =
n∑

i=1

( f (xi , yi ) − zi )
2 =

n∑

i=1

(a + bxi + cyi − zi )
2.

Necessary conditions for a minimum are

∂F

∂a
=

n∑

i=1

2(a + bxi + cyi − zi ) = 0,

∂F

∂b
=

n∑

i=1

2(a + bxi + cyi − zi )xi = 0,

∂F

∂c
=

n∑

i=1

2(a + bxi + cyi − zi )yi = 0.
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Therefore we obtain the system of normal equations

na +
(

n∑

i=1

xi

)
b +

(
n∑

i=1

yi

)
c =

n∑

i=1

zi
(

n∑

i=1

xi

)
a +

(
n∑

i=1

x2i

)
b +

(
n∑

i=1

xi yi

)
c =

n∑

i=1

zi xi
(

n∑

i=1

yi

)
a +

(
n∑

i=1

xi yi

)
b +

(
n∑

i=1

y2i

)
c =

n∑

i=1

zi yi

from which a, b and c can easily be computed.
It should be immediately clear that themethodof least squares can also be extended

to polynomials in multiple variables. How it may also be extended, under certain
conditions, to other function classes is demonstrated in Sect. 5.3 with the help of the
example of logistic regression.

A program for multivariate polynomial regression that uses ideas from dynamic
programming to quickly compute the needed power products can be found at

http://www.borgelt.net/regress.html

10.3 Activation Transformation

In this section we demonstrate how the weights and thresholds of a Hopfield net-
work that works with activations 0 and 1 can be transformed into the corresponding
parameters of a Hopfield network that works with the activations −1 and +1 (and
vice versa). This shows that the two network types are essentially equivalent, and
thus that it was justified to choose in Chap.8 whichever form was more suitable for
the specific task under consideration.

In the following we indicate by an upper index of the considered quantities what
the range of activation values of the neural network is, to which they refer:

0 : quantity of a network with actu ∈ { 0, 1},
− : quantity of a network with actu ∈ {−1, 1}.

Clearly we must always have

act0u = 1

2
(act−u + 1) and act−u = 2act0u − 1.

That is, the neuron u either has activation 1 in both networks or it has activation 0
in one network and activation −1 in the other. In order to achieve that both network
types exhibit the same behavior, it must also hold that:

s(net−u − θ−
u ) = s(net0u − θ0u ),

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_8
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where

s(x) =
{

1, if x ≥ 0,
−1, otherwise.

Only if this is the case the activation changes are the same in both networks. The
above equation clearly holds if

net−u − θ−
u = net0u − θ0u .

(Note that this is a sufficient, but not a necessary condition.) Using the relations
between the activations stated above, we obtain from this equation

net−u − θ−
u =

∑

v∈U−{u}
w−
uvact

−
u − θ−

u

=
∑

v∈U−{u}
w−
uv(2act

0
u − 1) − θ−

u

=
∑

v∈U−{u}
2w−

uvact
0
u −

∑

v∈U−{u}
w−
uv − θ−

u

!= net0u − θ0u

=
∑

v∈U−{u}
w0
uvact

0
u − θ0u

This equation holds if we choose

w0
uv = 2w−

uv and

θ0u = θ−
u +

∑

v∈U−{u}
w−
uv.

For the opposite direction we obtain

w−
uv = 1

2
w0
uv and

θ−
u = θ0u −

∑

v∈U−{u}
w−
uv = θ0u − 1

2

∑

v∈U−{u}
w0
uv.
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