Skip to main content

The Coronary Circulation in Cardiomyopathies and Cardiac Allografts

Effect of Specific Pathologies on Epicardial Vessels and the Microcirculation

  • Chapter
  • First Online:
Physiological Assessment of Coronary Stenoses and the Microcirculation

Abstract

Cardiomyopathies are a collection of diseases that encompass a broad range of diverse dentities all of which affect the structure of the myocardium.

Coronary microvascular dysfunction (CMD) can occur in cardiomyopathies in the absence of epicardial coronary artery disease. Furthermore, CMD has also been implicated in posttransplantation cardiac allograft vasculopathy (CAV). Although myocardial blood flow (MBF) abnormalities related to CMD have important prognostic implications in both scenarios, pathophysiological mechanisms differ between cardiomyopathies and CAV. To date, CMD is fully accepted in the pathogenesis of HCM and CAV, but some doubts remain for the role of CMD in DCM and other myocardial diseases. In this chapter, we review current knowledge about CMD in cardiomyopathies and CAV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cannon 3rd RO, Schenke WH, Maron BJ, Tracy CM, Leon MB, Brush Jr JE, Rosing DR, Epstein SE. Differences in coronary flow and myocardial metabolism at rest and during pacing between patients with obstructive and patients with nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 1987;10:53–62.

    Article  PubMed  Google Scholar 

  2. Maron BJ, Epstein SE, Roberts WC. Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries. Am J Cardiol. 1979;43:1086–102.

    Article  CAS  PubMed  Google Scholar 

  3. Pitcher D, Wainwright R, Maisey M, Curry P, Sowton E. Assessment of chest pain in hypertrophic cardiomyopathy using exercise thallium-201 myocardial scintigraphy. Br Heart J. 1980;44:650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cannon 3rd RO, Dilsizian V, O’Gara PT, Udelson JE, Schenke WH, Quyyumi A, Fananapazir L, Bonow RO. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy. Circulation. 1991;83:1660–7.

    Article  PubMed  Google Scholar 

  5. Elliott PM, Rosano GM, Gill JS, Poole-Wilson PA, Kaski JC, McKenna WJ. Changes in coronary sinus pH during dipyridamole stress in patients with hypertrophic cardiomyopathy. Heart. 1996;75:179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. von Dohlen TW, Prisant LM, Frank MJ. Significance of positive or negative thallium-201 scintigraphy in hypertrophic cardiomyopathy. Am J Cardiol. 1989;64:498–503.

    Article  Google Scholar 

  7. Udelson JE, Bonow RO, O’Gara PT, Maron BJ, Van Lingen A, Bacharach SL, Epstein SE. Verapamil prevents silent myocardial perfusion abnormalities during exercise in asymptomatic patients with hypertrophic cardiomyopathy. Circulation. 1989;79:1052–60.

    Article  CAS  PubMed  Google Scholar 

  8. Sorajja P, Chareonthaitawee P, Ommen SR, Miller TD, Hodge DO, Gibbons RJ. Prognostic utility of single-photon emission computed tomography in adult patients with hypertrophic cardiomyopathy. Am Heart J. 2006;151:426–35.

    Article  PubMed  Google Scholar 

  9. Elliott PM, Kaski JC, Prasad K, Seo H, Slade AK, Goldman JH, McKenna WJ. Chest pain during daily life in patients with hypertrophic cardiomyopathy: an ambulatory electrocardiographic study. Eur Heart J. 1996;17:1056–64.

    Article  CAS  PubMed  Google Scholar 

  10. Rigo F, Gherardi S, Galderisi M, Cortigiani L. Coronary flow reserve evaluation in stress-echocardiography laboratory. J Cardiovasc Med (Hagerstown). 2006;7:472–9.

    Article  Google Scholar 

  11. Asami Y, Yoshida K, Hozumi T, Akasaka T, Takagi T, Kaji S, Kawamoto T, Ogata Y, Yagi T, Morioka S, Yoshikawa J. Assessment of coronary flow reserve in patients with hypertrophic cardiomyopathy using transthoracic color doppler echocardiography. J Cardiol. 1998;32:247–52.

    CAS  PubMed  Google Scholar 

  12. Cortigiani L, Rigo F, Gherardi S, Galderisi M, Sicari R, Picano E. Prognostic implications of coronary flow reserve on left anterior descending coronary artery in hypertrophic cardiomyopathy. Am J Cardiol. 2008;102:1718–23.

    Article  PubMed  Google Scholar 

  13. Tesic M, Djordjevic-Dikic A, Beleslin B, Trifunovic D, Giga V, Marinkovic J, Petrovic O, Petrovic M, Stepanovic J, Dobric M, Vukcevic V, Stankovic G, Seferovic P, Ostojic M, Vujisic-Tesic B. Regional difference of microcirculation in patients with asymmetric hypertrophic cardiomyopathy: transthoracic doppler coronary flow velocity reserve analysis. J Am Soc Echocardiogr. 2013;26:775–82.

    Article  PubMed  Google Scholar 

  14. Iwakura K, Ito H, Takiuchi S, Taniyama Y, Nakatsuchi Y, Negoro S, Higashino Y, Okamura A, Masuyama T, Hori M, Fujii K, Minamino T. Alternation in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation. 1996;94:1269–75.

    Article  CAS  PubMed  Google Scholar 

  15. Kawamoto T, Yoshida K, Akasaka T, Hozumi T, Takagi T, Kaji S, Ueda Y. Can coronary blood flow velocity pattern after primary percutaneous transluminal coronary angiography predict recovery of regional left ventricular function in patients with acute myocardial infarction? Circulation. 1999;100:339–45.

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe N, Akasaka T, Yamaura Y, Akiyama M, Kaji S, Saito Y, Yoshida K. Intramyocardial coronary flow characteristics in patients with hypertrophic cardiomyopathy: non-invasive assessment by transthoracic doppler echocardiography. Heart. 2003;89:657–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam JB, Neubauer S, Watkins H. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation. 2007;115:2418–25.

    Article  PubMed  Google Scholar 

  18. Knaapen P, van Dockum WG, Gotte MJ, Broeze KA, Kuijer JP, Zwanenburg JJ, Marcus JT, Kok WE, van Rossum AC, Lammertsma AA, Visser FC. Regional heterogeneity of resting perfusion in hypertrophic cardiomyopathy is related to delayed contrast enhancement but not to systolic function: a PET and MRI study. J Nucl Cardiol. 2006;13:660–7.

    Article  PubMed  Google Scholar 

  19. Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, Bonow RO, Judd RM, Kim RJ. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:2156–64.

    Article  PubMed  Google Scholar 

  20. Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, Petrou M, Pennell DJ. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43:2260–4.

    Article  PubMed  Google Scholar 

  21. Papavassiliu T, Schnabel P, Schröder M, Borggrefe M. CMR scarring in a patient with hypertrophic cardiomyopathy correlates well with histological findings of fibrosis. Eur Heart J. 2005;26(22):2395.

    Article  PubMed  Google Scholar 

  22. Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G, Parodi O, Salvadori PA, Nista N, Papi L, L’Abbate A. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol. 1991;17:879–86.

    Article  CAS  PubMed  Google Scholar 

  23. Lorenzoni R, Gistri R, Cecchi F, Olivotto I, Chiriatti G, Elliott P, McKenna WJ, Camici PG. Coronary vasodilator reserve is impaired in patients with hypertrophic cardiomyopathy and left ventricular dysfunction. Am Heart J. 1998;136:972–81.

    Article  CAS  PubMed  Google Scholar 

  24. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349:1027–35.

    Article  CAS  PubMed  Google Scholar 

  25. Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, Torricelli F, Camici PG. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;47:1043–8.

    Article  PubMed  Google Scholar 

  26. Gistri R, Cecchi F, Choudhury L, Montereggi A, Sorace O, Salvadori PA, Camici PG. Effect of verapamil on absolute myocardial blood flow in hypertrophic cardiomyopathy. Am J Cardiol. 1994;74:363–8.

    Article  CAS  PubMed  Google Scholar 

  27. Choudhury L, Elliott P, Rimoldi O, Ryan M, Lammertsma AA, Boyd H, McKenna WJ, Camici PG. Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Basic Res Cardiol. 1999;94:49–59.

    Article  CAS  PubMed  Google Scholar 

  28. Soliman OI, Knaapen P, Geleijnse ML, Dijkmans PA, Anwar AM, Nemes A, Michels M, Vletter WB, Lammertsma AA, ten Cate FJ. Assessment of intravascular and extravascular mechanisms of myocardial perfusion abnormalities in obstructive hypertrophic cardiomyopathy by myocardial contrast echocardiography. Heart. 2007;93:1204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krams R, Kofflard MJM, Duncker DJ, Von Birgelen C, Carlier S, Kliffen M, Cate FJ, Serruys PW. Decreased coronary flow reserve in hypertrophic cardiomyopathy is related to remodeling of the coronary microcirculation. Circulation. 1998;97:230–3.

    Article  CAS  PubMed  Google Scholar 

  30. Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, Camici PG. The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54:866–75.

    Article  PubMed  Google Scholar 

  31. Schwartzkopff B, Mundhenke M, Strauer BE. Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomyopathy and impaired coronary vasodilator reserve: a possible cause for myocardial ischemia 1. J Am Coll Cardiol. 1998;31:1089–96.

    Article  CAS  PubMed  Google Scholar 

  32. Maron BJ, Wolfson JK, Epstein SE, Roberts WC. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986;8:545–57.

    Article  CAS  PubMed  Google Scholar 

  33. Takemura G, Takatsu Y, Fujiwara H. Luminal narrowing of coronary capillaries in human hypertrophic hearts: an ultrastructural morphometrical study using endomyocardial biopsy specimens. Heart. 1998;79:78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwon DH, Smedira NG, Rodriguez ER, Tan C, Setser R, Thamilarasan M, Lytle BW, Lever HM, Desai MY. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009;54:242–9.

    Article  PubMed  Google Scholar 

  35. Kingsbury MP, Turner MA, Flores NA, Bovill E, Sheridan DJ. Endogenous and exogenous coronary vasodilatation are attenuated in cardiac hypertrophy: a morphological defect? J Mol Cell Cardiol. 2000;32:527–38.

    Article  CAS  PubMed  Google Scholar 

  36. Crabos M, Coste P, Paccalin M, Tariosse L, Daret D, Besse P, Bonoron-Adèle S. Reduced basal NO-mediated dilation and decreased endothelial NO-synthase expression in coronary vessels of spontaneously hypertensive rats. J Mol Cell Cardiol. 1997;29:55–65.

    Article  CAS  PubMed  Google Scholar 

  37. Mihaljevic T, Paul S, Cohn LH, Wechsler A. Pathophysiology of aortic valve disease cardiac surgery in the adult. New York: McGraw-Hil; 2003. p. 791–810.

    Google Scholar 

  38. Brilla CG, Janicki JS, Weber KT. Impaired diastolic function and coronary reserve in genetic hypertension. Role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. Circ Res. 1991;69:107–15.

    Article  CAS  PubMed  Google Scholar 

  39. Kalkman EAJ, Bilgin YM, Haren P, Suylen RJ, Saxena PR, Schoemaker RG. Determinants of coronary reserve in rats subjected to coronary artery ligation or aortic banding. Cardiovasc Res. 1996;32:1088–95.

    Article  CAS  PubMed  Google Scholar 

  40. Tomanek RJ, Wangler RD, Bauer CA. Prevention of coronary vasodilator reserve decrement in spontaneously hypertensive rats. Hypertension. 1985;7:533–40.

    Article  CAS  PubMed  Google Scholar 

  41. Opherk D, Mall G, Zebe H, Schwarz F, Weihe E, Manthey J, Kubler W. Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries. Circulation. 1984;69:1–7.

    Article  CAS  PubMed  Google Scholar 

  42. Breisch EA, White FC, Nimmo LE, Bloor CM. Cardiac vasculature and flow during pressure-overload hypertrophy. Am J Phys – Heart Circ Phys. 1986;251:H1031–7.

    CAS  Google Scholar 

  43. Schwartzkopff B, Frenzel H, Diekerhoff J, Betz P, Flasshove M, Schulte HD, Mundhenke M, Motz W, Strauer BE. Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J. 1992;13:17–23.

    Article  PubMed  Google Scholar 

  44. Mueller TM, Marcus ML, Kerber RE, Young JA, Barnes RW, Abboud FM. Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ Res. 1978;42:543–9.

    Article  CAS  PubMed  Google Scholar 

  45. Bishop SP, Powell PC, Hasebe N, Shen YT, Patrick TA, Hittinger L, Vatner SF. Coronary vascular morphology in pressure-overload left ventricular hypertrophy. J Mol Cell Cardiol. 1996;28:141–54.

    Article  CAS  PubMed  Google Scholar 

  46. Ecker T, Gobel C, Hullin R, Rettig R, Seitz G, Hofmann F. Decreased cardiac concentration of cGMP kinase in hypertensive animals. An index for cardiac vascularization? Circ Res. 1989;65:1361–9.

    Article  CAS  PubMed  Google Scholar 

  47. Rakusan K, Flanagan MF, Geva T, Southern J, Van Praagh R. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation. 1992;86:38–46.

    Article  CAS  PubMed  Google Scholar 

  48. Gould KL, Carabello BA. Why angina in aortic stenosis with normal coronary arteriograms? Circulation. 2003;107:3121–3.

    Article  PubMed  Google Scholar 

  49. O’Gorman DJ, Thomas P, Turner MA, Sheridan DJ. Investigation of impaired coronary vasodilator reserve in the guinea pig heart with pressure induced hypertrophy. Eur Heart J. 1992;13:697–703.

    Article  PubMed  Google Scholar 

  50. Rajappan K, Rimoldi OE, Dutka DP, Ariff B, Pennell DJ, Sheridan DJ, Camici PG. Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation. 2002;105:470–6.

    Article  PubMed  Google Scholar 

  51. Villari B, Hess OM, Meier C, Pucillo A, Gaglione A, Turina M, Krayenbuehl HP. Regression of coronary artery dimensions after successful aortic valve replacement. Circulation. 1992;85:972–8.

    Article  CAS  PubMed  Google Scholar 

  52. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  53. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32:1454–9.

    Article  CAS  PubMed  Google Scholar 

  54. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Left ventricular mass and incidence of coronary heart disease in an elderly cohort. The Framingham Heart Study. Ann Intern Med. 1989;110:101–7.

    Article  CAS  PubMed  Google Scholar 

  55. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  56. Wicker P, Tarazi RC, Kobayashi K. Coronary blood flow during the development and regression of left ventricular hypertrophy in renovascular hypertensive rats. Am J Cardiol. 1983;51:1744–9.

    Article  CAS  PubMed  Google Scholar 

  57. Sato F, Isoyama S, Takishima T. Normalization of impaired coronary circulation in hypertrophied rat hearts. Hypertension. 1990;16:26–34.

    Article  CAS  PubMed  Google Scholar 

  58. Kingsbury M, Mahnke A, Turner M, Sheridan D. Recovery of coronary function and morphology during regression of left ventricular hypertrophy. Cardiovasc Res. 2002;55:83–96.

    Article  CAS  PubMed  Google Scholar 

  59. Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced cardiac mass and improved coronary hemodynamics in SHR. Hypertension. 1997;29:519–24.

    Article  CAS  PubMed  Google Scholar 

  60. Brilla CG, Janicki JS, Weber KT. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation. 1991;83:1771–9.

    Article  CAS  PubMed  Google Scholar 

  61. Xu R, Zhang Y, Zhang M, Ge ZM, Li XC, Zhang W. Relationship between regression of hypertensive left ventricular hypertrophy and improvement of coronary flow reserve. Zhonghua Yi Xue Za Zhi. 2003;83:658–61.

    PubMed  Google Scholar 

  62. Mizuno R, Fujimoto S, Saito Y, Okamoto Y. Optimal antihypertensive level for improvement of coronary microvascular dysfunction: the lower, the better? Hypertension. 2012;60:326–32.

    Article  CAS  PubMed  Google Scholar 

  63. Motz W, Strauer BE. Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension. 1996;27:1031–8.

    Article  CAS  PubMed  Google Scholar 

  64. Tomas JP, Moya JL, Barrios V, Campuzano R, Guzman G, Megias A, Ruiz-Leria S, Catalan P, Marfil T, Tarancon B, Muriel A, Garcia-Lledo A. Effect of candesartan on coronary flow reserve in patients with systemic hypertension. J Hypertens. 2006;24:2109–14.

    Article  CAS  PubMed  Google Scholar 

  65. Parodi O, Neglia D, Palombo C, Sambuceti G, Giorgetti A, Marabotti C, Gallopin M, Simonetti I, L’Abbate A. Comparative effects of enalapril and verapamil on myocardial blood flow in systemic hypertension. Circulation. 1997;96:864–73.

    Article  CAS  PubMed  Google Scholar 

  66. Zhu YH, Zhu YZ, Spitznagel H, Gohlke P, Unger T. Substrate metabolism, hormone interaction, and angiotensin-converting enzyme inhibitors in left ventricular hypertrophy. Diabetes. 1996;45:S59–65.

    Article  PubMed  Google Scholar 

  67. Just H, Frey M, Zehender M. Calcium antagonist drugs in hypertensive patients with angina pectoris. Eur Heart J. 1996;17:20–4.

    Article  PubMed  Google Scholar 

  68. Carpeggiani C, Neglia D, Paradossi U, Pratali L, Glauber M, L’Abbate A. Coronary flow reserve in severe aortic valve stenosis: a positron emission tomography study. J Cardiovasc Med. 2008;9:893–8.

    Article  Google Scholar 

  69. Anversa P, Ricci R, Olivetti G. Coronary capillaries during normal and pathological growth. Can J Cardiol. 1986;2:104–13.

    CAS  PubMed  Google Scholar 

  70. Antony I, Nitenberg A, Foult JM, Aptecar E. Coronary vasodilator reserve in untreated and treated hypertensive patients with and without left ventricular hypertrophy. J Am Coll Cardiol. 1993;22:514–20.

    Article  CAS  PubMed  Google Scholar 

  71. Brush JE, Cannon RO, Schenke WH, Bonow RO, Leon MB, Maron BJ, Epstein SE. Angina Due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med. 1988;319:1302–7.

    Article  PubMed  Google Scholar 

  72. Rodriguez-Porcel M, Zhu XY, Chade AR, Amores-Arriaga B, Caplice NM, Ritman EL, Lerman A, Lerman LO. Functional and structural remodeling of the myocardial microvasculature in early experimental hypertension. Am J Phys – Heart Circ Phys. 2006;290:H978–84.

    CAS  Google Scholar 

  73. McGoldrick RB, Kingsbury M, Turner MA, Sheridan DJ, Hughes AD. Left ventricular hypertrophy induced by aortic banding impairs relaxation of isolated coronary arteries. Clin Sci. 2007;113:473–8.

    Article  CAS  PubMed  Google Scholar 

  74. McAinsh AM, Turner MA, O’Hare D, Nithythyananthan R, Johnston DG, O’Gorman DJ, Sheridan DJ. Cardiac hypertrophy impairs recovery from ischaemia because there is a reduced reactive hyperaemic response. Cardiovasc Res. 1995;30:113–21.

    Article  CAS  PubMed  Google Scholar 

  75. Koyanagi S, Eastham CL, Harrison DG, Marcus ML. Increased size of myocardial infarction in dogs with chronic hypertension and left ventricular hypertrophy. Circ Res. 1982;50:55–62.

    Article  CAS  PubMed  Google Scholar 

  76. Yetman AT, McCrindle BW, MacDonald C, Freedom RM, Gow R. Myocardial bridging in children with hypertrophic cardiomyopathy--a risk factor for sudden death. N Engl J Med. 1998;339:1201–9.

    Article  CAS  PubMed  Google Scholar 

  77. Gori F, Basso C, Thiene G. Myocardial infarction in a patient with hypertrophic cardiomyopathy. N Engl J Med. 2000;342:593–4.

    Article  CAS  PubMed  Google Scholar 

  78. Davies JE, Sen S, Broyd C, Hadjiloizou N, Baksi J, Francis DP, Foale RA, Parker KH, Hughes AD, Chukwuemeka A, Casula R, Malik IS, Mikhail GW, Mayet J. Arterial pulse wave dynamics after percutaneous aortic valve replacement/clinical perspective. Circulation. 2011;124:1565–72.

    Article  PubMed  Google Scholar 

  79. Kyriakidis MK, Dernellis JM, Androulakis AE, Kelepeshis GA, Barbetseas J, Anastasakis AN, Trikas AG, Tentolouris CA, Gialafos JE, Toutouzas PK. Changes in phasic coronary blood flow velocity profile and relative coronary flow reserve in patients with hypertrophic obstructive cardiomyopathy. Circulation. 1997;96:834–41.

    Article  CAS  PubMed  Google Scholar 

  80. Cannon RO, McIntosh CL, Schenke WH, Maron BJ, Bonow RO, Epstein SE. Effect of surgical reduction of left ventricular outflow obstruction on hemodynamics, coronary flow, and myocardial metabolism in hypertrophic cardiomyopathy. Circulation. 1989;79:766–75.

    Article  PubMed  Google Scholar 

  81. Factor SM, Butany J, Sole MJ, Wigle ED, Williams WC, Rojkind M. Pathologic fibrosis and matrix connective tissue in the subaortic myocardium of patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1991;17:1343–51.

    Article  CAS  PubMed  Google Scholar 

  82. Lombardi R, Betocchi S, Losi MA, Tocchetti CG, Aversa M, Miranda M, D’Alessandro G, Cacace A, Ciampi Q, Chiariello M. Myocardial collagen turnover in hypertrophic cardiomyopathy. Circulation. 2003;108:1455–60.

    Article  CAS  PubMed  Google Scholar 

  83. Tanaka M, Fujiwara H, Onodera T, Wu DJ, Hamashima Y, Kawai C. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br Heart J. 1986;55:575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Varnava A, Elliott P, Sharma S, McKenna W, Davies M. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart. 2000;84:476–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol. 2000;31:988–98.

    Article  CAS  PubMed  Google Scholar 

  86. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331:1564–75.

    Article  CAS  PubMed  Google Scholar 

  87. Koutalas E, Kanoupakis E, Vardas P. Sudden cardiac death in non-ischemic dilated cardiomyopathy: a critical appraisal of existing and potential risk stratification tools. Int J Cardiol. 2013;167:335–41.

    Article  PubMed  Google Scholar 

  88. Inoue T, Sakai Y, Morooka S, Hayashi T, Takayanagi K, Yamanaka T, Kakoi H, Takabatake Y. Coronary flow reserve in patients with dilated cardiomyopathy. Am Heart J. 1993;125:93–8.

    Article  CAS  PubMed  Google Scholar 

  89. Spoladore R, Fisicaro A, Faccini A, Camici PG. Coronary microvascular dysfunction in primary cardiomyopathies. Heart. 2014;100:806–13.

    Article  CAS  PubMed  Google Scholar 

  90. Treasure CB, Vita JA, Cox DA, Fish RD, Gordon JB, Mudge GH, Colucci WS, Sutton MG, Selwyn AP, Alexander RW, et al. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation. 1990;81:772–9.

    Article  CAS  PubMed  Google Scholar 

  91. Neglia D, L’Abbate A. Coronary microvascular dysfunction and idiopathic dilated cardiomyopathy. Pharmacol Rep PR. 2005;57(Suppl):151–5.

    PubMed  Google Scholar 

  92. Taylor AL, Ziesche S, Yancy C, Carson P, D’Agostino Jr R, Ferdinand K, Taylor M, Adams K, Sabolinski M, Worcel M, Cohn JN, African-American Heart Failure Trial I. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. New England J Med. 2004;351:2049–57.

    Article  CAS  Google Scholar 

  93. Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, Smith R, Dunkman WB, Loeb H, Wong M, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325:303–10.

    Article  CAS  PubMed  Google Scholar 

  94. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado D, Cox MG, Daubert JP, Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Sanborn DM, Steinberg JS, Tandri H, Thiene G, Towbin JA, Tsatsopoulou A, Wichter T, Zareba W. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121:1533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Paul M, Rahbar K, Gerss J, Kies P, Schober O, Schafers K, Breithardt G, Schulze-Bahr E, Wichter T, Schafers M. Microvascular dysfunction in nonfailing arrhythmogenic right ventricular cardiomyopathy. Eur J Nucl Med Mol Imaging. 2012;39:416–20.

    Article  PubMed  Google Scholar 

  96. Wichter T, Schafers M, Rhodes CG, Borggrefe M, Lerch H, Lammertsma AA, Hermansen F, Schober O, Breithardt G, Camici PG. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy : quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation. 2000;101:1552–8.

    Article  CAS  PubMed  Google Scholar 

  97. Almeida AG, Pinto FJ. Non-compaction cardiomyopathy. Heart. 2013;99:1535–42.

    Article  PubMed  Google Scholar 

  98. Jenni R, Wyss CA, Oechslin EN, Kaufmann PA. Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J Am Coll Cardiol. 2002;39:450–4.

    Article  PubMed  Google Scholar 

  99. Gianni M, Dentali F, Grandi AM, Sumner G, Hiralal R, Lonn E. Apical ballooning syndrome or takotsubo cardiomyopathy: a systematic review. Eur Heart J. 2006;27:1523–9.

    Article  PubMed  Google Scholar 

  100. Previtali M, Repetto A, Panigada S, Camporotondo R, Tavazzi L. Left ventricular apical ballooning syndrome: prevalence, clinical characteristics and pathogenetic mechanisms in a European population. Int J Cardiol. 2009;134:91–6.

    Article  PubMed  Google Scholar 

  101. Galiuto L, De Caterina AR, Porfidia A, Paraggio L, Barchetta S, Locorotondo G, Rebuzzi AG, Crea F. Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in Apical Ballooning or Tako-Tsubo Syndrome. Eur Heart J. 2010;31:1319–27.

    Article  PubMed  Google Scholar 

  102. Patel SM, Lerman A, Lennon RJ, Prasad A. Impaired coronary microvascular reactivity in women with apical ballooning syndrome (Takotsubo/stress cardiomyopathy). Eur Heart J Acute Cardiovasc Care. 2013;2:147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Martin EA, Prasad A, Rihal CS, Lerman LO, Lerman A. Endothelial function and vascular response to mental stress are impaired in patients with apical ballooning syndrome. J Am Coll Cardiol. 2010;56:1840–6.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chambliss KL, Shaul PW. Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev. 2002;23:665–86.

    Article  CAS  PubMed  Google Scholar 

  105. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.

    Article  CAS  PubMed  Google Scholar 

  106. Schultheiss HP, Kuhl U, Cooper LT. The management of myocarditis. Eur Heart J. 2011;32:2616–25.

    Article  PubMed  Google Scholar 

  107. Tschope C, Bock CT, Kasner M, Noutsias M, Westermann D, Schwimmbeck PL, Pauschinger M, Poller WC, Kuhl U, Kandolf R, Schultheiss HP. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation. 2005;111:879–86.

    Article  CAS  PubMed  Google Scholar 

  108. Schmidt-Lucke C, Spillmann F, Bock T, Kuhl U, Van Linthout S, Schultheiss HP, Tschope C. Interferon beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infection. J Infect Dis. 2010;201:936–45.

    Article  PubMed  Google Scholar 

  109. Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R, Tome MT, McKenna WJ, Lee P, Camici PG. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart. 2006;92:357–60.

    Article  CAS  PubMed  Google Scholar 

  110. Chimenti C, Morgante E, Tanzilli G, Mangieri E, Critelli G, Gaudio C, Russo MA, Frustaci A. Angina in fabry disease reflects coronary small vessel disease. Circ Heart Fail. 2008;1:161–9.

    Article  PubMed  Google Scholar 

  111. Tomberli B, Cecchi F, Sciagra R, Berti V, Lisi F, Torricelli F, Morrone A, Castelli G, Yacoub MH, Olivotto I. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. Eur J Heart Fail. 2013;15:1363–73.

    Article  PubMed  Google Scholar 

  112. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Stork S, Voelker W, Ertl G, Wanner C, Strotmann J. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation. 2009;119:524–9.

    Article  CAS  PubMed  Google Scholar 

  113. Garcia-Pavia P, Tome-Esteban MT, Rapezzi C. Amyloidosis. Also a heart disease. Rev Esp Cardiol. 2011;64:797–808.

    Article  PubMed  Google Scholar 

  114. Modesto KM, Dispenzieri A, Gertz M, Cauduro SA, Khandheria BK, Seward JB, Kyle R, Wood CM, Bailey KR, Tajik AJ, Miller FA, Pellikka PA, Abraham TP. Vascular abnormalities in primary amyloidosis. Eur Heart J. 2007;28:1019–24.

    Article  PubMed  Google Scholar 

  115. Dorbala S, Vangala D, Bruyere Jr J, Quarta C, Kruger J, Padera R, Foster C, Hanley M, Di Carli MF, Falk R. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail. 2014;2:358–67.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O, Grunberger G. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100:813–9.

    Article  PubMed  Google Scholar 

  117. Rahmani M, Cruz RP, Granville DJ, McManus BM. Allograft vasculopathy versus atherosclerosis. Circ Res. 2006;99:801–15.

    Article  CAS  PubMed  Google Scholar 

  118. Christie JD, Edwards LB, Kucheryavaya AY, Aurora P, Dobbels F, Kirk R, Rahmel AO, Stehlik J, Hertz MI. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult lung and heart-lung transplant report – 2010. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2010;29:1104–18.

    Article  Google Scholar 

  119. Stehlik J, Edwards LB, Kucheryavaya AY, Aurora P, Christie JD, Kirk R, Dobbels F, Rahmel AO, Hertz MI. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult heart transplant report – 2010. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2010;29:1089–103.

    Article  Google Scholar 

  120. Ramzy D, Rao V, Brahm J, Miriuka S, Delgado D, Ross HJ. Cardiac allograft vasculopathy: a review. Can J Surg J canadien de chirurgie. 2005;48:319–27.

    Google Scholar 

  121. Waaga AM, Gasser M, Laskowski I, Tilney NL. Mechanisms of chronic rejection. Curr Opin Immunol. 2000;12:517–21.

    Article  CAS  PubMed  Google Scholar 

  122. Modjeski KL, Morrell CN. Small cells, big effects: the role of platelets in transplant vasculopathy. J Thromb Thrombolysis. 2014;37:17–23.

    Article  CAS  PubMed  Google Scholar 

  123. Benatti RD, Taylor DO. Evolving concepts and treatment strategies for cardiac allograft vasculopathy. Curr Treat Options Cardiovasc Med. 2014;16:278.

    Article  PubMed  Google Scholar 

  124. Schmauss D, Weis M. Cardiac allograft vasculopathy: recent developments. Circulation. 2008;117:2131–41.

    Article  PubMed  Google Scholar 

  125. Five-year findings of the hypertension detection and follow-up program. Prevention and reversal of left ventricular hypertrophy with antihypertensive drug therapy. Hypertension Detection and Follow-up Program Cooperative Group. Hypertension. 1985;7:105–12.

    Google Scholar 

  126. Fedoseyeva EV, Zhang F, Orr PL, Levin D, Buncke HJ, Benichou G. De novo autoimmunity to cardiac myosin after heart transplantation and its contribution to the rejection process. J Immunol. 1999;162:6836–42.

    CAS  PubMed  Google Scholar 

  127. Nath DS, Ilias Basha H, Tiriveedhi V, Alur C, Phelan D, Ewald GA, Moazami N, Mohanakumar T. Characterization of immune responses to cardiac self-antigens myosin and vimentin in human cardiac allograft recipients with antibody-mediated rejection and cardiac allograft vasculopathy. J Heart Lung Transplant Off Publ Int Soc Heart Transplantat. 2010;29:1277–85.

    Article  Google Scholar 

  128. Haque MA, Mizobuchi T, Yasufuku K, Fujisawa T, Brutkiewicz RR, Zheng Y, Woods K, Smith GN, Cummings OW, Heidler KM, Blum JS, Wilkes DS. Evidence for immune responses to a self-antigen in lung transplantation: role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J Immunol. 2002;169:1542–9.

    Article  CAS  PubMed  Google Scholar 

  129. Grattan MT, Moreno-Cabral CE, Starnes VA, Oyer PE, Stinson EB, Shumway NE. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA. 1989;261:3561–6.

    Article  CAS  Google Scholar 

  130. Subramanian AK, Quinn TC, Kickler TS, Kasper EK, Tucker PC. Correlation of chlamydia pneumoniae infection and severity of accelerated graft arteriosclerosis after cardiac transplantation. Transplantation. 2002;73:761–4.

    Article  PubMed  Google Scholar 

  131. Takada M, Nadeau KC, Hancock WW, Mackenzie HS, Shaw GD, Waaga AM, Chandraker A, Sayegh MH, Tilney NL. Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation. 1998;65:1533–42.

    Article  CAS  PubMed  Google Scholar 

  132. Mehra MR, Uber PA, Ventura HO, Scott RL, Park MH. The impact of mode of donor brain death on cardiac allograft vasculopathy: an intravascular ultrasound study. J Am Coll Cardiol. 2004;43:806–10.

    Article  PubMed  Google Scholar 

  133. Mehra MR. Contemporary concepts in prevention and treatment of cardiac allograft vasculopathy. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surgeons. 2006;6:1248–56.

    Article  CAS  Google Scholar 

  134. Weiss MJ, Madsen JC, Rosengard BR, Allan JS. Mechanisms of chronic rejection in cardiothoracic transplantation. Front Biosci J Virtual Library. 2008;13:2980–8.

    Article  CAS  Google Scholar 

  135. Hauptman PJ, Nakagawa T, Tanaka H, Libby P. Acute rejection: culprit or coincidence in the pathogenesis of cardiac graft vascular disease? J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 1995;14:S173–80.

    CAS  Google Scholar 

  136. Dhaliwal A, Thohan V. Cardiac allograft vasculopathy: the Achilles’ heel of long-term survival after cardiac transplantation. Curr Atheroscler Rep. 2006;8:119–30.

    Article  PubMed  Google Scholar 

  137. Sanchez Lazaro IJ, Almenar Bonet L, Moro Lopez J, Sanchez Lacuesta E, Martinez-Dolz L, Aguero Ramon-Llin J, Andres Lalaguna L, Cano Perez O, Ortiz Martinez V, Buendia Fuentes F, Salvador Sanz A. Influence of traditional cardiovascular risk factors in the recipient on the development of cardiac allograft vasculopathy after heart transplantation. Transplant Proc. 2008;40:3056–7.

    Article  CAS  PubMed  Google Scholar 

  138. Kobashigawa JA, Katznelson S, Laks H, Johnson JA, Yeatman L, Wang XM, Chia D, Terasaki PI, Sabad A, Cogert GA, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med. 1995;333:621–7.

    Article  CAS  PubMed  Google Scholar 

  139. Nytroen K, Rustad LA, Erikstad I, Aukrust P, Ueland T, Lekva T, Gude E, Wilhelmsen N, Hervold A, Aakhus S, Gullestad L, Arora S. Effect of high-intensity interval training on progression of cardiac allograft vasculopathy. J Heart Lung Transplant Off Publ Int Soc Heart Transplantat. 2013;32:1073–80.

    Article  Google Scholar 

  140. Hiemann NE, Wellnhofer E, Knosalla C, Lehmkuhl HB, Stein J, Hetzer R, Meyer R. Prognostic impact of microvasculopathy on survival after heart transplantation: evidence from 9713 endomyocardial biopsies. Circulation. 2007;116:1274–82.

    Article  PubMed  Google Scholar 

  141. Seki A, Fishbein MC. Predicting the development of cardiac allograft vasculopathy. Cardiovasc Pathol. 2014;23:253–60.

    Article  PubMed  Google Scholar 

  142. Lu W-h, Palatnik K, Fishbein GA, Lai C, Levi DS, Perens G, Alejos J, Kobashigawa J, Fishbein MC. Diverse morphologic manifestations of cardiac allograft vasculopathy: a pathologic study of 64 allograft hearts. J Heart Lung Transplant. 2011;30:1044–50.

    Article  PubMed  Google Scholar 

  143. Castellani C, Angelini A, de Boer OJ, van der Loos CM, Fedrigo M, Frigo AC, Meijer-Jorna LB, Li X, Ploegmakers HJ, Tona F, Feltrin G, Gerosa G, Valente M, Thiene G, van der Wal AC. Intraplaque hemorrhage in cardiac allograft vasculopathy. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surgeons. 2014;14:184–92.

    Article  CAS  Google Scholar 

  144. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, Fedson S, Fisher P, Gonzales-Stawinski G, Martinelli L, McGiffin D, Smith J, Taylor D, Meiser B, Webber S, Baran D, Carboni M, Dengler T, Feldman D, Frigerio M, Kfoury A, Kim D, Kobashigawa J, Shullo M, Stehlik J, Teuteberg J, Uber P, Zuckermann A, Hunt S, Burch M, Bhat G, Canter C, Chinnock R, Crespo-Leiro M, Delgado R, Dobbels F, Grady K, Kao W, Lamour J, Parry G, Patel J, Pini D, Towbin J, Wolfel G, Delgado D, Eisen H, Goldberg L, Hosenpud J, Johnson M, Keogh A, Lewis C, O’Connell J, Rogers J, Ross H, Russell S, Vanhaecke J, International Society of H and Lung Transplantation G. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2010;29:914–56.

    Article  Google Scholar 

  145. Zakliczynski M, Babinska A, Flak B, Nozynski J, Kamienska N, Szygula-Jurkiewicz B, Pacholewicz J, Przybylski R, Zembala M. Persistent mild lesions in coronary angiography predict poor long-term survival of heart transplant recipients. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2014;33:618–23.

    Article  Google Scholar 

  146. Kobashigawa JA, Tobis JM, Starling RC, Tuzcu EM, Smith AL, Valantine HA, Yeung AC, Mehra MR, Anzai H, Oeser BT, Abeywickrama KH, Murphy J, Cretin N. Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. J Am Coll Cardiol. 2005;45:1532–7.

    Article  PubMed  Google Scholar 

  147. St Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ, Stinson EB, Popp RL. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation. 1992;85:979–87.

    Article  CAS  PubMed  Google Scholar 

  148. Fang JC, Rocco T, Jarcho J, Ganz P, Mudge GH. Noninvasive assessment of transplant-associated arteriosclerosis. Am Heart J. 1998;135:980–7.

    Article  CAS  PubMed  Google Scholar 

  149. Bax JJ, Kramer CM, Marwick TH, Wijns W. Cardiovascular imaging: a handbook for clinical practice. New York: John Wiley & Sons; 2009.

    Google Scholar 

  150. Dandel M, Hummel M, Müller J, Wellnhofer E, Meyer R, Solowjowa N, Ewert R, Hetzer R. Reliability of tissue doppler wall motion monitoring after heart transplantation for replacement of invasive routine screenings by optimally timed cardiac biopsies and catheterizations. Circulation. 2001;104:I-184–91.

    Article  CAS  Google Scholar 

  151. Spes CH, Klauss V, Mudra H, Schnaack SD, Tammen AR, Rieber J, Siebert U, Henneke K-H, Überfuhr P, Reichart B, Theisen K, Angermann CE. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: a comparison with coronary angiography and intravascular ultrasound. Circulation. 1999;100:509–15.

    Article  CAS  PubMed  Google Scholar 

  152. Hacker M, Hoyer HX, Uebleis C, Ueberfuhr P, Foerster S, La Fougere C, Stempfle H-U. Quantitative assessment of cardiac allograft vasculopathy by real-time myocardial contrast echocardiography: a comparison with conventional echocardiographic analyses and [Tc99m]-sestamibi SPECT. Eur J Echocardiogr. 2008;9(4):494–500.

    PubMed  Google Scholar 

  153. Tona F, Osto E, Tarantini G, Gambino A, Cavallin F, Feltrin G, Montisci R, Caforio AL, Gerosa G, Iliceto S. Coronary flow reserve by transthoracic echocardiography predicts epicardial intimal thickening in cardiac allograft vasculopathy. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surgeons. 2010;10:1668–76.

    Article  CAS  Google Scholar 

  154. Wu YW, Yen RF, Lee CM, Ho YL, Chou NK, Wang SS, Huang PJ. Diagnostic and prognostic value of dobutamine thallium-201 single-photon emission computed tomography after heart transplantation. J Heart Lung Transplant Off Publ Int Soc Heart Transplantat. 2005;24:544–50.

    Article  Google Scholar 

  155. Preumont N, Berkenboom G, Vachiery JL, Jansens JL, Antoine M, Wikler D, Damhaut P, Degré S, Lenaers A, Goldman S. Early alterations of myocardial blood flow reserve in heart transplant recipients with angiographically normal coronary arteries. J Heart Lung Transplant. 2000;19:538–45.

    Article  CAS  PubMed  Google Scholar 

  156. Kofoed KF, Czernin J, Johnson J, Kobashigawa J, Phelps ME, Laks H, Schelbert HR. Effects of cardiac allograft vasculopathy on myocardial blood flow, vasodilatory capacity, and coronary vasomotion. Circulation. 1997;95:600–6.

    Article  CAS  PubMed  Google Scholar 

  157. Steen H, Merten C, Refle S, Klingenberg R, Dengler T, Giannitsis E, Katus HA. Prevalence of different gadolinium enhancement patterns in patients after heart transplantation. J Am Coll Cardiol. 2008;52:1160–7.

    Article  PubMed  Google Scholar 

  158. Korosoglou G, Osman NF, Dengler TJ, Riedle N, Steen H, Lehrke S, Giannitsis E, Katus HA. Strain-encoded cardiac magnetic resonance for the evaluation of chronic allograft vasculopathy in transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surgeons. 2009;9:2587–96.

    Article  CAS  Google Scholar 

  159. Mittal TK, Panicker MG, Mitchell AG, Banner NR. Cardiac allograft vasculopathy after heart transplantation: electrocardiographically gated cardiac CT angiography for assessment. Radiology. 2013;268:374–81.

    Article  PubMed  Google Scholar 

  160. Miller CA, Sarma J, Naish JH, Yonan N, Williams SG, Shaw SM, Clark D, Pearce K, Stout M, Potluri R, Borg A, Coutts G, Chowdhary S, McCann GP, Parker GJM, Ray SG, Schmitt M. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol. 2014;63:799–808.

    Article  PubMed  Google Scholar 

  161. Davis SF, Yeung AC, Meredith IT, Charbonneau F, Ganz P, Selwyn AP, Anderson TJ. Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation. 1996;93:457–62.

    Article  CAS  PubMed  Google Scholar 

  162. Hollenberg SM, Klein LW, Parrillo JE, Scherer M, Burns D, Tamburro P, Bromet D, Satran A, Costanzo MR. Changes in coronary endothelial function predict progression of allograft vasculopathy after heart transplantation. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2004;23:265–71.

    Article  Google Scholar 

  163. Kubrich M, Petrakopoulou P, Kofler S, Nickel T, Kaczmarek I, Meiser BM, Reichart B, von Scheidt W, Weis M. Impact of coronary endothelial dysfunction on adverse long-term outcome after heart transplantation. Transplantation. 2008;85:1580–7.

    Article  PubMed  Google Scholar 

  164. Weis M, Hartmann A, Olbrich HG, Hor G, Zeiher AM. Prognostic significance of coronary flow reserve on left ventricular ejection fraction in cardiac transplant recipients. Transplantation. 1998;65:103–8.

    Article  CAS  PubMed  Google Scholar 

  165. Fearon WF, Hirohata A, Nakamura M, Luikart H, Lee DP, Vagelos RH, Hunt SA, Valantine HA, Fitzgerald PJ, Yock PG, Yeung AC. Discordant changes in epicardial and microvascular coronary physiology after cardiac transplantation: Physiologic Investigation for Transplant Arteriopathy II (PITA II) study. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2006;25:765–71.

    Article  Google Scholar 

  166. Haddad F, Khazanie P, Deuse T, Weisshaar D, Zhou J, Nam CW, Vu TA, Gomari FA, Skhiri M, Simos A, Schnittger I, Vrotvec B, Hunt SA, Fearon WF. Clinical and functional correlates of early microvascular dysfunction after heart transplantation. Circ Heart Fail. 2012;5:759–68.

    Article  PubMed  Google Scholar 

  167. Di Mario C, Krams R, Gil R, Serruys PW. Slope of the instantaneous hyperemic diastolic coronary flow velocity–pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation. 1994;90:1215–24.

    Article  PubMed  Google Scholar 

  168. Escaned J, Flores A, Garcia-Pavia P, Segovia J, Jimenez J, Aragoncillo P, Salas C, Alfonso F, Hernandez R, Angiolillo DJ, Jimenez-Quevedo P, Banuelos C, Alonso-Pulpon L, Macaya C. Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: validation with endomyocardial sampling in cardiac allografts. Circulation. 2009;120:1561–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Broyd, C.J., Dominguez, F., Garcia-Pavia, P. (2017). The Coronary Circulation in Cardiomyopathies and Cardiac Allografts. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics