Skip to main content

The Effect of Cardiovascular Risk Factors on the Coronary Circulation

Effects of Cardiovascular Risk Factors on Coronary Circulation: Hypertension, Diabetes, Dyslipidemia

  • Chapter
  • First Online:
Physiological Assessment of Coronary Stenoses and the Microcirculation

Abstract

The atherosclerotic plaque and its limitation to normal coronary blood flow constitute the more evident effect of traditional cardiovascular risk factors on the endothelium of epicardial coronary arteries. However, at an early stage, risk factors may cause coronary microvascular dysfunction through both an endothelial-dependent and independent mechanisms. Hypertension, dyslipidemia, and diabetes mellitus may contribute to endothelial dysfunction (ED) due to the generation of oxidative stress, mainly through NADPH oxidases upregulation and uncoupled endothelial nitric oxide synthase. ED can be regarded as the risk of the risk factors. ED is a predominantly functional first manifestation of atherosclerosis, but it is also essential in the pathogenesis of atherosclerosis because it contributes to the initiation and evolution of prothrombotic, proinflammatory and proliferative states. ED may be regarded as an integrated index of all atherogenic and atheroprotective factors present in an individual, including unknown factors and genetic predisposition, and has been shown to be reversible with appropriate intervention. Thus, it may be a potentially useful clinical strategy to consider endothelial function in the assessment of early atherosclerosis not only to predict and prevent atherosclerotic complications but also to determine the efficacy of current ongoing and future therapeutic options. Testing, targeting and treating ED can be looked as doing so with the atherosclerotic process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMA:

Asymmetric dimethylarginine

Ach:

Acetylcholine

CAD:

Coronary artery disease

CBF:

Coronary blood flow

CFR:

Coronary flow reserve

CHD:

Coronary heart disease

CMD:

Coronary microvascular dysfunction

CV:

Cardiovascular

CVRF:

Cardiovascular risk factors

ED:

Endothelial dysfunction

EDCF:

Endothelium-derived contracting factor

EDRF:

Endothelium-derived relaxing factor

EF:

Endothelial function

eNOS:

Endothelial nitric oxide synthase

FMD:

Flow-mediated vasodilation

LVH:

Left ventricular hypertrophy

MBF:

Myocardial blood flow

NO:

Nitric oxide

RH-PAT:

Reactive hyperemia-peripheral artery tonometry

ROS:

Reactive oxygen species

References

  1. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation. 1991;83(2):391–401.

    Article  CAS  PubMed  Google Scholar 

  2. Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation. 1995;92(3):518–25.

    Article  CAS  PubMed  Google Scholar 

  3. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33(22):2771–82b. doi:10.1093/eurheartj/ehs246.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hasdai D, Cannan CR, Mathew V, Holmes Jr DR, Lerman A. Evaluation of patients with minimally obstructive coronary artery disease and angina. Int J Cardiol. 1996;53(3):203–8.

    Article  CAS  PubMed  Google Scholar 

  5. Rembert JC, Boyd LM, Watkinson WP, Greenfield Jr JC. Effect of adenosine on transmural myocardial blood flow distribution in the awake dog. Am J Physiol. 1980;239(1):H7–13.

    CAS  PubMed  Google Scholar 

  6. Tune JD, Gorman MW, Feigl EO. Matching coronary blood flow to myocardial oxygen consumption. J Appl Physiol. 2004;97(1):404–15. doi:10.1152/japplphysiol.01345.2003.

    Article  PubMed  Google Scholar 

  7. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82(5):1595–606.

    Article  CAS  PubMed  Google Scholar 

  8. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101(16):1899–906.

    Article  CAS  PubMed  Google Scholar 

  9. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653–8.

    Article  PubMed  Google Scholar 

  10. Targonski PV, Bonetti PO, Pumper GM, Higano ST, Holmes Jr DR, Lerman A. Coronary endothelial dysfunction is associated with an increased risk of cerebrovascular events. Circulation. 2003;107(22):2805–9. doi:10.1161/01.CIR.0000072765.93106.EE.

    Article  PubMed  Google Scholar 

  11. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol. 2001;12(4):383–9.

    Article  CAS  PubMed  Google Scholar 

  12. Gossl M, Yoon MH, Choi BJ, Rihal C, Tilford JM, Reriani M, Gulati R, Sandhu G, Eeckhout E, Lennon R, Lerman LO, Lerman A. Accelerated coronary plaque progression and endothelial dysfunction: serial volumetric evaluation by IVUS. JACC Cardiovasc Imaging. 2014;7(1):103–4. doi:10.1016/j.jcmg.2013.05.020.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hamburg NM, Keyes MJ, Larson MG, Vasan RS, Schnabel R, Pryde MM, Mitchell GF, Sheffy J, Vita JA, Benjamin EJ. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation. 2008;117(19):2467–74. doi:10.1161/CIRCULATIONAHA.107.748574.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff AM, Topol EJ. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290(7):898–904. doi:10.1001/jama.290.7.898.

    Article  PubMed  Google Scholar 

  15. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504. doi:10.1056/NEJMoa040583.

    Article  CAS  PubMed  Google Scholar 

  16. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, Gotto AM, Greten H, Kastelein JJ, Shepherd J, Wenger NK. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352(14):1425–35. doi:10.1056/NEJMoa050461.

    Article  CAS  PubMed  Google Scholar 

  17. Anderson TJ, Gerhard MD, Meredith IT, Charbonneau F, Delagrange D, Creager MA, Selwyn AP, Ganz P. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75(6):71B–4.

    Article  CAS  PubMed  Google Scholar 

  18. Teragawa H, Ueda K, Matsuda K, Kimura M, Higashi Y, Oshima T, Yoshizumi M, Chayama K. Relationship between endothelial function in the coronary and brachial arteries. Clin Cardiol. 2005;28(10):460–6.

    Article  PubMed  Google Scholar 

  19. Hamburg NM, Palmisano J, Larson MG, Sullfutuire LM, Lehman BT, Vasan RS, Levy D, Mitchell GF, Vita JA, Benjamin EJ. Relation of brachial and digital measures of vascular function in the community: the Framingham heart study. Hypertension. 2011;57(3):390–6. doi:10.1161/HYPERTENSIONAHA.110.160812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, Hamburg NM, Luscher TF, Shechter M, Taddei S, Vita JA, Lerman A. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126(6):753–67. doi:10.1161/CIRCULATIONAHA.112.093245.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  22. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340(2):115–26. doi:10.1056/NEJM199901143400207.

    Article  CAS  PubMed  Google Scholar 

  23. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101(4):731–6. doi:10.1172/JCI1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008;5(6):338–49. doi:10.1038/ncpcardio1211.

    Article  PubMed  CAS  Google Scholar 

  25. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998;101(11):2567–78. doi:10.1172/JCI1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation. 2004;110(14):1933–9. doi:10.1161/01.CIR.0000143232.67642.7A.

    Article  CAS  PubMed  Google Scholar 

  27. Kang KT. Endothelium-derived relaxing factors of small resistance arteries in hypertension. Toxicol Res. 2014;30(3):141–8. doi:10.5487/TR.2014.30.3.141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37, 837a–7d. doi:10.1093/eurheartj/ehr304.

  29. Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol. 2006;46:235–76. doi:10.1146/annurev.pharmtox.44.101802.121844.

    Article  CAS  PubMed  Google Scholar 

  30. Woodman RJ, Chew GT, Watts GF. Mechanisms, significance and treatment of vascular dysfunction in type 2 diabetes mellitus: focus on lipid-regulating therapy. Drugs. 2005;65(1):31–74.

    Article  CAS  PubMed  Google Scholar 

  31. Drummond GR, Cai H, Davis ME, Ramasamy S, Harrison DG. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res. 2000;86(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Oehrlein SA, Wallerath T, Ihrig-Biedert I, Wohlfart P, Ulshofer T, Jessen T, Herget T, Forstermann U, Kleinert H. Activation of protein kinase C alpha and/or epsilon enhances transcription of the human endothelial nitric oxide synthase gene. Mol Pharmacol. 1998;53(4):630–7.

    CAS  PubMed  Google Scholar 

  33. Bec N, Gorren AFC, Mayer B, Schmidt PP, Andersson KK, Lange R. The role of tetrahydrobiopterin in the activation of oxygen by nitric-oxide synthase. J Inorg Biochem. 2000;81(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  34. Jackson WF. Ion channels and vascular tone. Hypertension. 2000;35(1 Pt 2):173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Gutterman DD. Vascular control in humans: focus on the coronary microcirculation. Basic Res Cardiol. 2009;104(3):211–27. doi:10.1007/s00395-009-0775-y.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang A, Sun D, Smith CJ, Connetta JA, Shesely EG, Koller A, Kaley G. In eNOS knockout mice skeletal muscle arteriolar dilation to acetylcholine is mediated by EDHF. Am J Physiol Heart Circ Physiol. 2000;278(3):H762–8.

    CAS  PubMed  Google Scholar 

  37. Vanhoutte PM. Endothelium-dependent hyperpolarizations: the history. Pharmacol Res. 2004;49(6):503–8. doi:10.1016/j.phrs.2003.11.015.

    Article  CAS  PubMed  Google Scholar 

  38. Hamasaki S, Al Suwaidi J, Higano ST, Miyauchi K, Holmes Jr DR, Lerman A. Attenuated coronary flow reserve and vascular remodeling in patients with hypertension and left ventricular hypertrophy. J Am Coll Cardiol. 2000;35(6):1654–60.

    Article  CAS  PubMed  Google Scholar 

  39. Rimoldi O, Rosen SD, Camici PG. The blunting of coronary flow reserve in hypertension with left ventricular hypertrophy is transmural and correlates with systolic blood pressure. J Hypertens. 2014;32(12):2465–71. doi:10.1097/HJH.0000000000000338; discussion 2471.

    Article  CAS  PubMed  Google Scholar 

  40. Rajappan K, Rimoldi OE, Dutka DP, Ariff B, Pennell DJ, Sheridan DJ, Camici PG. Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation. 2002;105(4):470–6.

    Article  PubMed  Google Scholar 

  41. Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation? Hypertension. 2006;48(6):1012–7. doi:10.1161/01.HYP.0000249510.20326.72.

    Article  CAS  PubMed  Google Scholar 

  42. Heusch G, Baumgart D, Camici P, Chilian W, Gregorini L, Hess O, Indolfi C, Rimoldi O. alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation. 2000;101(6):689–94.

    Article  CAS  PubMed  Google Scholar 

  43. Feihl F, Liaudet L, Levy BI, Waeber B. Hypertension and microvascular remodelling. Cardiovasc Res. 2008;78(2):274–85. doi:10.1093/cvr/cvn022.

    Article  CAS  PubMed  Google Scholar 

  44. Schwartzkopff B, Frenzel H, Dieckerhoff J, Betz P, Flasshove M, Schulte HD, Mundhenke M, Motz W, Strauer BE. Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J. 1992;13 Suppl D:17–23.

    Article  CAS  PubMed  Google Scholar 

  45. Tice FD, Peterson JW, Orsinelli DA, Binkley PF, Cody RJ, Guthrie R, Pearson AC. Vascular hypertrophy is an early finding in essential hypertension and is related to arterial pressure waveform contour. Am Heart J. 1996;132(3):621–7.

    Article  CAS  PubMed  Google Scholar 

  46. Linder L, Kiowski W, Buhler FR, Luscher TF. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation. 1990;81(6):1762–7.

    Article  CAS  PubMed  Google Scholar 

  47. Taddei S, Virdis A, Mattei P, Ghiadoni L, Fasolo CB, Sudano I, Salvetti A. Hypertension causes premature aging of endothelial function in humans. Hypertension. 1997;29(3):736–43.

    Article  CAS  PubMed  Google Scholar 

  48. Panza JA, Quyyumi AA, Brush Jr JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22–7. doi:10.1056/NEJM199007053230105.

    Article  CAS  PubMed  Google Scholar 

  49. Treasure CB, Klein JL, Vita JA, Manoukian SV, Renwick GH, Selwyn AP, Ganz P, Alexander RW. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation. 1993;87(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  50. Taddei S, Virdis A, Mattei P, Arzilli F, Salvetti A. Endothelium-dependent forearm vasodilation is reduced in normotensive subjects with familial history of hypertension. J Cardiovasc Pharmacol. 1992;20 Suppl 12:S193–5.

    Article  PubMed  Google Scholar 

  51. Hongo K, Nakagomi T, Kassell NF, Sasaki T, Lehman M, Vollmer DG, Tsukahara T, Ogawa H, Torner J. Effects of aging and hypertension on endothelium-dependent vascular relaxation in rat carotid artery. Stroke. 1988;19(7):892–7.

    Article  CAS  PubMed  Google Scholar 

  52. Takase H, Moreau P, Kung CF, Nava E, Luscher TF. Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency. Effect of verapamil and trandolapril. Hypertension. 1996;27(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  53. Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest. 1987;79(1):170–4. doi:10.1172/JCI112779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Forstermann U, Mugge A, Alheid U, Haverich A, Frolich JC. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res. 1988;62(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  55. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315(17):1046–51. doi:10.1056/NEJM198610233151702.

    Article  CAS  PubMed  Google Scholar 

  56. Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest. 1993;92(2):652–62. doi:10.1172/JCI116634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2(8670):997–1000.

    Article  CAS  PubMed  Google Scholar 

  58. Feletou M, Vanhoutte PM. Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol. 2006;26(6):1215–25. doi:10.1161/01.ATV.0000217611.81085.c5.

    Article  CAS  PubMed  Google Scholar 

  59. Tomioka H, Hattori Y, Fukao M, Sato A, Liu M, Sakuma I, Kitabatake A, Kanno M. Relaxation in different-sized rat blood vessels mediated by endothelium-derived hyperpolarizing factor: importance of processes mediating precontractions. J Vasc Res. 1999;36(4):311–20. doi:25659.

    Article  CAS  PubMed  Google Scholar 

  60. Treasure CB, Manoukian SV, Klein JL, Vita JA, Nabel EG, Renwick GH, Selwyn AP, Alexander RW, Ganz P. Epicardial coronary artery responses to acetylcholine are impaired in hypertensive patients. Circ Res. 1992;71(4):776–81.

    Article  CAS  PubMed  Google Scholar 

  61. Dzau VJ, Safar ME. Large conduit arteries in hypertension: role of the vascular renin-angiotensin system. Circulation. 1988;77(5):947–54.

    Article  CAS  PubMed  Google Scholar 

  62. Zeiher AM, Drexler H. Coronary hemodynamic determinants of epicardial artery vasomotor responses during sympathetic stimulation in humans. Basic Res Cardiol. 1991;86 Suppl 2:203–13.

    PubMed  Google Scholar 

  63. Rodriguez CJ, Swett K, Agarwal SK, Folsom AR, Fox ER, Loehr LR, Ni H, Rosamond WD, Chang PP. Systolic blood pressure levels among adults with hypertension and incident cardiovascular events: the atherosclerosis risk in communities study. JAMA Intern Med. 2014;174(8):1252–61. doi:10.1001/jamainternmed.2014.2482.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li ZY, Taviani V, Tang T, Sadat U, Young V, Patterson A, Graves M, Gillard JH. The mechanical triggers of plaque rupture: shear stress vs pressure gradient. Br J Radiol. 2009;82(Spec No 1):S39–45. doi:10.1259/bjr/15036781.

    Article  PubMed  Google Scholar 

  65. Alreja G, Joseph J. Renin and cardiovascular disease: worn-out path, or new direction. World J Cardiol. 2011;3(3):72–83. doi:10.4330/wjc.v3.i3.72.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Watanabe T, Barker TA, Berk BC. Angiotensin II and the endothelium: diverse signals and effects. Hypertension. 2005;45(2):163–9. doi:10.1161/01.HYP.0000153321.13792.b9.

    Article  CAS  PubMed  Google Scholar 

  67. Shahin Y, Khan JA, Samuel N, Chetter I. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials. Atherosclerosis. 2011;216(1):7–16. doi:10.1016/j.atherosclerosis.2011.02.044.

    Article  CAS  PubMed  Google Scholar 

  68. Li S, Wu Y, Yu G, Xia Q, Xu YW. Angiotensin II receptor blockers improve peripheral endothelial function: a meta-analysis of randomized controlled trials. PLoS One. 2014;9(3). doi:ARTN e90217. 10.1371/journal.pone.0090217.

  69. Bonadei I, Vizzardi E, D’Aloia A, Sciatti E, Raddino R, Metra M. Role of aliskiren on arterial stiffness and endothelial function in patients with primary hypertension. J Clin Hypertens. 2014;16(3):202–6. doi:10.1111/jch.12262.

    Article  CAS  Google Scholar 

  70. Flammer AJ, Gossl M, Li J, Reriani M, Shonyo S, Loeffler D, Herrmann J, Lerman LO, Lerman A. Renin inhibition with aliskiren lowers circulating endothelial progenitor cells in patients with early atherosclerosis. J Hypertens. 2013;31(3):632–5. doi:10.1097/HJH.0b013e32835c6d2d.

    Article  CAS  PubMed  Google Scholar 

  71. Schroten NF, Damman K, Hemmelder MH, Voors AA, Navis G, Gaillard CA, van Veldhuisen DJ, Van Gilst WH, Hillege HL. Effect of additive renin inhibition with aliskiren on renal blood flow in patients with Chronic Heart Failure and Renal Dysfunction (Additive Renin Inhibition with Aliskiren on renal blood flow and Neurohormonal Activation in patients with Chronic Heart Failure and Renal Dysfunction). Am Heart J. 2015;169(5):693–701. doi:10.1016/j.ahj.2014.12.016, e693.

    Article  CAS  PubMed  Google Scholar 

  72. Gheorghiade M, Bohm M, Greene SJ, Fonarow GC, Lewis EF, Zannad F, Solomon SD, Baschiera F, Botha J, Hua TA, Gimpelewicz CR, Jaumont X, Lesogor A, Maggioni AP, Investigators A, Coordinators. Effect of aliskiren on postdischarge mortality and heart failure readmissions among patients hospitalized for heart failure: the ASTRONAUT randomized trial. JAMA. 2013;309(11):1125–35. doi:10.1001/jama.2013.1954.

    Article  CAS  PubMed  Google Scholar 

  73. Tang EH, Vanhoutte PM. Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch. 2010;459(6):995–1004. doi:10.1007/s00424-010-0786-4.

    Article  CAS  PubMed  Google Scholar 

  74. Taddei S, Virdis A, Ghiadoni L, Uleri S, Magagna A, Salvetti A. Lacidipine restores endothelium-dependent vasodilation in essential hypertensive patients. Hypertension. 1997;30(6):1606–12.

    Article  CAS  PubMed  Google Scholar 

  75. Investigators E. Effect of nifedipine and cerivastatin on coronary endothelial function in patients with coronary artery disease: the ENCORE I Study (Evaluation of Nifedipine and Cerivastatin On Recovery of coronary Endothelial function). Circulation. 2003;107(3):422–8.

    Article  CAS  Google Scholar 

  76. Luscher TF, Pieper M, Tendera M, Vrolix M, Rutsch W, van den Branden F, Gil R, Bischoff KO, Haude M, Fischer D, Meinertz T, Munzel T. A randomized placebo-controlled study on the effect of nifedipine on coronary endothelial function and plaque formation in patients with coronary artery disease: the ENCORE II study. Eur Heart J. 2009;30(13):1590–7. doi:10.1093/eurheartj/ehp151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Clarkson P, Mullen MJ, Donald AE, Powe AJ, Thomson H, Thorne SA, Bull T, Deanfield JE. The effect of amlodipine on endothelial function in young adults with a strong family history of premature coronary artery disease: a randomised double blind study. Atherosclerosis. 2001;154(1):171–7.

    Article  CAS  PubMed  Google Scholar 

  78. Gao YS, Nagao T, Bond RA, Janssens WJ, Vanhoutte PM. Nebivolol induces endothelium-dependent relaxations of canine coronary arteries. J Cardiovasc Pharmacol. 1991;17(6):964–9.

    Article  CAS  PubMed  Google Scholar 

  79. Cockcroft JR, Chowienczyk PJ, Brett SE, Chen CP, Dupont AG, Van Nueten L, Wooding SJ, Ritter JM. Nebivolol vasodilates human forearm vasculature: evidence for an L-arginine/NO-dependent mechanism. J Pharmacol Exp Ther. 1995;274(3):1067–71.

    CAS  PubMed  Google Scholar 

  80. Prisant LM. Nebivolol: pharmacologic profile of an ultraselective, vasodilatory beta1-blocker. J Clin Pharmacol. 2008;48(2):225–39. doi:10.1177/0091270007310378.

    Article  CAS  PubMed  Google Scholar 

  81. Broeders MA, Doevendans PA, Bekkers BC, Bronsaer R, van Gorsel E, Heemskerk JW, Egbrink MG, van Breda E, Reneman RS, van Der Zee R. Nebivolol: a third-generation beta-blocker that augments vascular nitric oxide release: endothelial beta(2)-adrenergic receptor-mediated nitric oxide production. Circulation. 2000;102(6):677–84.

    Article  CAS  PubMed  Google Scholar 

  82. Feuerstein GZ, Ruffolo Jr RR. Carvedilol, a novel multiple action antihypertensive agent with antioxidant activity and the potential for myocardial and vascular protection. Eur Heart J. 1995;16 Suppl F:38–42.

    Article  CAS  PubMed  Google Scholar 

  83. Bank AJ, Kelly AS, Thelen AM, Kaiser DR, Gonzalez-Campoy JM. Effects of carvedilol versus metoprolol on endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Hypertens. 2007;20(7):777–83. doi:10.1016/j.amjhyper.2007.01.019.

    Article  CAS  PubMed  Google Scholar 

  84. Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, Luscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  85. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation. 1994;90(2):808–17.

    Article  CAS  PubMed  Google Scholar 

  86. Hamasaki S, Higano ST, Suwaidi JA, Nishimura RA, Miyauchi K, Holmes Jr DR, Lerman A. Cholesterol-lowering treatment is associated with improvement in coronary vascular remodeling and endothelial function in patients with normal or mildly diseased coronary arteries. Arterioscler Thromb Vasc Biol. 2000;20(3):737–43.

    Article  CAS  PubMed  Google Scholar 

  87. Tanner FC, Noll G, Boulanger CM, Luscher TF. Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide. Circulation. 1991;83(6):2012–20.

    Article  CAS  PubMed  Google Scholar 

  88. Simon BC, Cunningham LD, Cohen RA. Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery. J Clin Invest. 1990;86(1):75–9. doi:10.1172/JCI114718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hein TW, Kuo L. LDLs impair vasomotor function of the coronary microcirculation: role of superoxide anions. Circ Res. 1998;83(4):404–14.

    Article  CAS  PubMed  Google Scholar 

  90. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993;91(6):2546–51. doi:10.1172/JCI116491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pritchard Jr KA, Groszek L, Smalley DM, Sessa WC, Wu M, Villalon P, Wolin MS, Stemerman MB. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res. 1995;77(3):510–8.

    Article  CAS  PubMed  Google Scholar 

  92. Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986;250(5 Pt 2):H822–7.

    CAS  PubMed  Google Scholar 

  93. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994;14(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  94. Libby P. The vascular biology of atherosclerosis. In: Bonow R, Mann D, Zipes D, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Elsevier Science. Philadelphia. 2007; p. 900–4.

    Google Scholar 

  95. Lavi S, Bae JH, Rihal CS, Prasad A, Barsness GW, Lennon RJ, Holmes Jr DR, Lerman A. Segmental coronary endothelial dysfunction in patients with minimal atherosclerosis is associated with necrotic core plaques. Heart. 2009;95(18):1525–30. doi:10.1136/hrt.2009.166017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Choi BJ, Prasad A, Gulati R, Best PJ, Lennon RJ, Barsness GW, Lerman LO, Lerman A. Coronary endothelial dysfunction in patients with early coronary artery disease is associated with the increase in intravascular lipid core plaque. Eur Heart J. 2013;34(27):2047–54. doi:10.1093/eurheartj/eht132.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Choi BJ, Matsuo Y, Aoki T, Kwon TG, Prasad A, Gulati R, Lennon RJ, Lerman LO, Lerman A. Coronary endothelial dysfunction is associated with inflammation and vasa vasorum proliferation in patients with early atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(11):2473–7. doi:10.1161/ATVBAHA.114.304445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Czernin J, Barnard RJ, Sun KT, Krivokapich J, Nitzsche E, Dorsey D, Phelps ME, Schelbert HR. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation. 1995;92(2):197–204.

    Article  CAS  PubMed  Google Scholar 

  99. Dalla Nora E, Passaro A, Zamboni PF, Calzoni F, Fellin R, Solini A. Atorvastatin improves metabolic control and endothelial function in type 2 diabetic patients: a placebo-controlled study. J Endocrinol Invest. 2003;26(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  100. Adel A, Abdel-Salam Z, Nammas W. Low-dose statin therapy improves endothelial function in type 2 diabetic patients with normal serum total cholesterol: a randomized placebo-controlled study. J Clin Hypertens. 2010;12(10):820–5. doi:10.1111/j.1751-7176.2010.00367.x.

    Article  CAS  Google Scholar 

  101. Balletshofer BM, Goebbel S, Rittig K, Enderle M, Schmolzer I, Wascher TC, Ferenc Pap A, Westermeier T, Petzinna D, Matthaei S, Haring HU. Intense cholesterol lowering therapy with a HMG-CoA reductase inhibitor does not improve nitric oxide dependent endothelial function in type-2-diabetes--a multicenter, randomised, double-blind, three-arm placebo-controlled clinical trial. Exp Clin Endocrinol Diabetes. 2005;113(6):324–30. doi:10.1055/s-2005-865642.

    Article  CAS  PubMed  Google Scholar 

  102. van Venrooij FV, van de Ree MA, Bots ML, Stolk RP, Huisman MV, Banga JD, Group DS. Aggressive lipid lowering does not improve endothelial function in type 2 diabetes: the Diabetes Atorvastatin Lipid Intervention (DALI) Study: a randomized, double-blind, placebo-controlled trial. Diabetes Care. 2002;25(7):1211–6.

    Article  Google Scholar 

  103. Ceriello A, Assaloni R, Da Ros R, Maier A, Piconi L, Quagliaro L, Esposito K, Giugliano D. Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients. Circulation. 2005;111(19):2518–24. doi:10.1161/01.CIR.0000165070.46111.9F.

    Article  CAS  PubMed  Google Scholar 

  104. Smith Jr SC, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, Gibbons RJ, Grundy SM, Hiratzka LF, Jones DW, Lloyd-Jones DM, Minissian M, Mosca L, Peterson ED, Sacco RL, Spertus J, Stein JH, Taubert KA, World Heart F, the Preventive Cardiovascular Nurses A. AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients with Coronary and other Atherosclerotic Vascular Disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation. 2011;124(22):2458–73. doi:10.1161/CIR.0b013e318235eb4d.

    Article  PubMed  Google Scholar 

  105. Bonetti PO, Lerman LO, Napoli C, Lerman A. Statin effects beyond lipid lowering – are they clinically relevant? Eur Heart J. 2003;24(3):225–48.

    Article  CAS  PubMed  Google Scholar 

  106. Reriani MK, Dunlay SM, Gupta B, West CP, Rihal CS, Lerman LO, Lerman A. Effects of statins on coronary and peripheral endothelial function in humans: a systematic review and meta-analysis of randomized controlled trials. Eur J Cardiovasc Prev Rehabil. 2011;18(5):704–16. doi:10.1177/1741826711398430.

    Article  PubMed  Google Scholar 

  107. Vita JA, Yeung AC, Winniford M, Hodgson JM, Treasure CB, Klein JL, Werns S, Kern M, Plotkin D, Shih WJ, Mitchel Y, Ganz P. Effect of cholesterol-lowering therapy on coronary endothelial vasomotor function in patients with coronary artery disease. Circulation. 2000;102(8):846–51.

    Article  CAS  PubMed  Google Scholar 

  108. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet. 1991;338(8782–8783):1546–50.

    Article  CAS  Google Scholar 

  109. Lerman A, Burnett Jr JC, Higano ST, McKinley LJ, Holmes Jr DR. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation. 1998;97(21):2123–8.

    Article  CAS  PubMed  Google Scholar 

  110. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B, Investigators I. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22. doi:10.1056/NEJMoa0706628.

    Article  CAS  PubMed  Google Scholar 

  111. Simic B, Hermann M, Shaw SG, Bigler L, Stalder U, Dorries C, Besler C, Luscher TF, Ruschitzka F. Torcetrapib impairs endothelial function in hypertension. Eur Heart J. 2012;33(13):1615–24. doi:10.1093/eurheartj/ehr348.

    Article  CAS  PubMed  Google Scholar 

  112. Luscher TF, Taddei S, Kaski JC, Jukema JW, Kallend D, Munzel T, Kastelein JJ, Deanfield JE, Dal VI. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J. 2012;33(7):857–65. doi:10.1093/eurheartj/ehs019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Mundl H, Nicholls SJ, Shah PK, Tardif JC, Wright RS, Dal OI. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99. doi:10.1056/NEJMoa1206797.

    Article  CAS  PubMed  Google Scholar 

  114. Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, Stepanavage M, Liu SX, Gibbons P, Ashraf TB, Zafarino J, Mitchel Y, Barter P, Determining the E, Tolerability I. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363(25):2406–15. doi:10.1056/NEJMoa1009744.

  115. Hooper L, Thompson RL, Harrison RA, Summerbell CD, Moore H, Worthington HV, Durrington PN, Ness AR, Capps NE, Davey Smith G, Riemersma RA, Ebrahim SB. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Syst Rev. 2004;4, CD003177. doi:10.1002/14651858.CD003177.pub2.

    Google Scholar 

  116. Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, Hunter D, Manson JE. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287(14):1815–21.

    Article  CAS  PubMed  Google Scholar 

  117. He K, Song Y, Daviglus ML, Liu K, Van Horn L, Dyer AR, Greenland P. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation. 2004;109(22):2705–11. doi:10.1161/01.CIR.0000132503.19410.6B.

    Article  PubMed  Google Scholar 

  118. Casula M, Soranna D, Catapano AL, Corrao G. Long-term effect of high dose omega-3 fatty acid supplementation for secondary prevention of cardiovascular outcomes: a meta-analysis of randomized, placebo controlled trials [corrected]. Atheroscler Suppl. 2013;14(2):243–51. doi:10.1016/S1567-5688(13)70005-9.

    Article  PubMed  Google Scholar 

  119. Wang Q, Liang X, Wang L, Lu X, Huang J, Cao J, Li H, Gu D. Effect of omega-3 fatty acids supplementation on endothelial function: a meta-analysis of randomized controlled trials. Atherosclerosis. 2012;221(2):536–43. doi:10.1016/j.atherosclerosis.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  120. He K, Liu K, Daviglus ML, Jenny NS, Mayer-Davis E, Jiang R, Steffen L, Siscovick D, Tsai M, Herrington D. Associations of dietary long-chain n-3 polyunsaturated fatty acids and fish with biomarkers of inflammation and endothelial activation (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol. 2009;103(9):1238–43. doi:10.1016/j.amjcard.2009.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Egert S, Stehle P. Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Curr Opin Clin Nutr Metab Care. 2011;14(2):121–31. doi:10.1097/MCO.0b013e3283439622.

    Article  CAS  PubMed  Google Scholar 

  122. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92. doi:10.1161/ATVBAHA.108.179739.

    Article  CAS  PubMed  Google Scholar 

  123. Hakkinen T, Luoma JS, Hiltunen MO, Macphee CH, Milliner KJ, Patel L, Rice SQ, Tew DG, Karkola K, Yla-Herttuala S. Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1999;19(12):2909–17.

    Article  CAS  PubMed  Google Scholar 

  124. Kolodgie FD, Burke AP, Skorija KS, Ladich E, Kutys R, Makuria AT, Virmani R. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(11):2523–9. doi:10.1161/01.ATV.0000244681.72738.bc.

    Article  CAS  PubMed  Google Scholar 

  125. Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta. 2006;1761(11):1246–59. doi:10.1016/j.bbalip.2006.07.011.

    Article  CAS  PubMed  Google Scholar 

  126. Lavi S, McConnell JP, Rihal CS, Prasad A, Mathew V, Lerman LO, Lerman A. Local production of lipoprotein-associated phospholipase A2 and lysophosphatidylcholine in the coronary circulation: association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation. 2007;115(21):2715–21. doi:10.1161/CIRCULATIONAHA.106.671420.

    Article  CAS  PubMed  Google Scholar 

  127. Yang EH, McConnell JP, Lennon RJ, Barsness GW, Pumper G, Hartman SJ, Rihal CS, Lerman LO, Lerman A. Lipoprotein-associated phospholipase A2 is an independent marker for coronary endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol. 2006;26(1):106–11. doi:10.1161/01.ATV.0000191655.87296.ab.

    Article  CAS  PubMed  Google Scholar 

  128. Garg PK, McClelland RL, Jenny NS, Criqui M, Liu K, Polak JF, Jorgensen NW, Cushman M. Association of lipoprotein-associated phospholipase A(2) and endothelial function in the Multi-Ethnic Study of Atherosclerosis (MESA). Vasc Med. 2011;16(4):247–52. doi:10.1177/1358863X11411360.

    Article  PubMed  Google Scholar 

  129. Investigators S, White HD, Held C, Stewart R, Tarka E, Brown R, Davies RY, Budaj A, Harrington RA, Steg PG, Ardissino D, Armstrong PW, Avezum A, Aylward PE, Bryce A, Chen H, Chen MF, Corbalan R, Dalby AJ, Danchin N, De Winter RJ, Denchev S, Diaz R, Elisaf M, Flather MD, Goudev AR, Granger CB, Grinfeld L, Hochman JS, Husted S, Kim HS, Koenig W, Linhart A, Lonn E, Lopez-Sendon J, Manolis AJ, Mohler 3rd ER, Nicolau JC, Pais P, Parkhomenko A, Pedersen TR, Pella D, Ramos-Corrales MA, Ruda M, Sereg M, Siddique S, Sinnaeve P, Smith P, Sritara P, Swart HP, Sy RG, Teramoto T, Tse HF, Watson D, Weaver WD, Weiss R, Viigimaa M, Vinereanu D, Zhu J, Cannon CP, Wallentin L. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370(18):1702–11. doi:10.1056/NEJMoa1315878.

    Article  CAS  Google Scholar 

  130. O’Donoghue ML, Braunwald E, White HD, Lukas MA, Tarka E, Steg PG, Hochman JS, Bode C, Maggioni AP, Im K, Shannon JB, Davies RY, Murphy SA, Crugnale SE, Wiviott SD, Bonaca MP, Watson DF, Weaver WD, Serruys PW, Cannon CP, Investigators S-T, Steen DL. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. Jama. 2014;312(10):1006–15. doi:10.1001/jama.2014.11061.

    Article  PubMed  CAS  Google Scholar 

  131. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, Koren MJ, Lepor NE, Lorenzato C, Pordy R, Chaudhari U, Kastelein JJ, Investigators OLT. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99. doi:10.1056/NEJMoa1501031.

    Article  CAS  PubMed  Google Scholar 

  132. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA, Open-Label Study of Long-Term Evaluation against LDLCI. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9. doi:10.1056/NEJMoa1500858.

    Article  CAS  Google Scholar 

  133. Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 2012;359(1–2):347–58. doi:10.1007/s11010-011-1028-6.

    Article  CAS  PubMed  Google Scholar 

  134. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun. 2008;374(2):341–4. doi:10.1016/j.bbrc.2008.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Urban D, Poss J, Bohm M, Laufs U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62(16):1401–8. doi:10.1016/j.jacc.2013.07.056.

    Article  CAS  PubMed  Google Scholar 

  136. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes. 1993;42(7):1017–25.

    Article  CAS  PubMed  Google Scholar 

  137. Nahser Jr PJ, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation. 1995;91(3):635–40.

    Article  PubMed  Google Scholar 

  138. Pitkanen OP, Nuutila P, Raitakari OT, Ronnemaa T, Koskinen PJ, Iida H, Lehtimaki TJ, Laine HK, Takala T, Viikari JS, Knuuti J. Coronary flow reserve is reduced in young men with IDDM. Diabetes. 1998;47(2):248–54.

    Article  CAS  PubMed  Google Scholar 

  139. Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41(8):1387–93.

    Article  PubMed  CAS  Google Scholar 

  140. Hamilton SJ, Watts GF. Endothelial dysfunction in diabetes: pathogenesis, significance, and treatment. Rev Diabet Stud. 2013;10(2–3):133–56. doi:10.1900/RDS.2013.10.133.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord. 2010;11(1):61–74. doi:10.1007/s11154-010-9134-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chew GT, Watts GF. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the ‘recoupling hypothesis’. QJM. 2004;97(8):537–48. doi:10.1093/qjmed/hch089.

    Article  CAS  PubMed  Google Scholar 

  143. Dandona P, Aljada A, Chaudhuri A, Mohanty P. Endothelial dysfunction, inflammation and diabetes. Rev Endocr Metab Disord. 2004;5(3):189–97. doi:10.1023/B:REMD.0000032407.88070.0a.

    Article  CAS  PubMed  Google Scholar 

  144. Dandona P, Chaudhuri A, Aljada A. Endothelial dysfunction and hypertension in diabetes mellitus. Med Clin North Am. 2004;88(4):911–31. doi:10.1016/j.mcna.2004.04.006, x–xi.

    Article  CAS  PubMed  Google Scholar 

  145. Arcaro G, Zamboni M, Rossi L, Turcato E, Covi G, Armellini F, Bosello O, Lechi A. Body fat distribution predicts the degree of endothelial dysfunction in uncomplicated obesity. Int J Obes Relat Metab Disord. 1999;23(9):936–42.

    Article  CAS  PubMed  Google Scholar 

  146. Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM, Paolisso G, Marfella R, Giugliano D. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol. 2002;39(7):1145–50.

    Article  CAS  PubMed  Google Scholar 

  147. Shige H, Ishikawa T, Suzukawa M, Ito T, Nakajima K, Higashi K, Ayaori M, Tabata S, Ohsuzu F, Nakamura H. Endothelium-dependent flow-mediated vasodilation in the postprandial state in type 2 diabetes mellitus. Am J Cardiol. 1999;84(10):1272–4, A1279.

    Article  CAS  PubMed  Google Scholar 

  148. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94(3):1172–9. doi:10.1172/JCI117433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113(15):1888–904. doi:10.1161/CIRCULATIONAHA.105.563213.

    Article  PubMed  Google Scholar 

  150. Cersosimo E, DeFronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev. 2006;22(6):423–36. doi:10.1002/dmrr.634.

    Article  CAS  PubMed  Google Scholar 

  151. Lteif A, Vaishnava P, Baron AD, Mather KJ. Endothelin limits insulin action in obese/insulin-resistant humans. Diabetes. 2007;56(3):728–34. doi:10.2337/db06-1406.

    Article  CAS  PubMed  Google Scholar 

  152. Duncan ER, Walker SJ, Ezzat VA, Wheatcroft SB, Li JM, Shah AM, Kearney MT. Accelerated endothelial dysfunction in mild prediabetic insulin resistance: the early role of reactive oxygen species. Am J Physiol Endocrinol Metab. 2007;293(5):E1311–9. doi:10.1152/ajpendo.00299.2007.

    Article  CAS  PubMed  Google Scholar 

  153. Kearney MT, Duncan ER, Kahn M, Wheatcroft SB. Insulin resistance and endothelial cell dysfunction: studies in mammalian models. Exp Physiol. 2008;93(1):158–63. doi:10.1113/expphysiol.2007.039172.

    Article  CAS  PubMed  Google Scholar 

  154. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97(11):2601–10. doi:10.1172/JCI118709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Han KA, Patel Y, Lteif AA, Chisholm R, Mather KJ. Contributions of dysglycaemia, obesity, and insulin resistance to impaired endothelium-dependent vasodilation in humans. Diabetes Metab Res Rev. 2011;27(4):354–61. doi:10.1002/dmrr.1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14(1):5–12. doi:10.1007/s11154-012-9229-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cavallo Perin P, Pacini G, Giunti S, Comune M, Conte MR, Cassader M, Pagano G. Microvascular angina (cardiological syndrome X) per se is not associated with hyperinsulinaemia or insulin resistance. Eur J Clin Invest. 2000;30(6):481–6.

    Article  CAS  PubMed  Google Scholar 

  158. Jadhav S, Ferrell W, Greer IA, Petrie JR, Cobbe SM, Sattar N. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2006;48(5):956–63. doi:10.1016/j.jacc.2006.04.088.

    Article  CAS  PubMed  Google Scholar 

  159. Prior JO, Quinones MJ, Hernandez-Pampaloni M, Facta AD, Schindler TH, Sayre JW, Hsueh WA, Schelbert HR. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation. 2005;111(18):2291–8. doi:10.1161/01.CIR.0000164232.62768.51.

    Article  CAS  PubMed  Google Scholar 

  160. Mathewkutty S, McGuire DK. Platelet perturbations in diabetes: implications for cardiovascular disease risk and treatment. Expert Rev Cardiovasc Ther. 2009;7(5):541–9. doi:10.1586/erc.09.30.

    Article  PubMed  Google Scholar 

  161. Libby P, Plutzky J. Inflammation in diabetes mellitus: role of peroxisome proliferator-activated receptor-alpha and peroxisome proliferator-activated receptor-gamma agonists. Am J Cardiol. 2007;99(4A):27B–40. doi:10.1016/j.amjcard.2006.11.004.

    Article  CAS  PubMed  Google Scholar 

  162. Standards of medical care in diabetes--2010. Diabet Care. 2010;33 Suppl 1:S11–61. doi:10.2337/dc10-S011.

  163. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.

    Google Scholar 

  164. Maiorana A, O’Driscoll G, Cheetham C, Dembo L, Stanton K, Goodman C, Taylor R, Green D. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol. 2001;38(3):860–6.

    Article  CAS  PubMed  Google Scholar 

  165. Reboussin DM, Goff Jr DC, Lipkin EW, Herrington DM, Summerson J, Steffes M, Crouse 3rd RJ, Jovanovic L, Feinglos MN, Probstfield JL, Banerji MA, Pettitt DJ, Williamson J. The combination oral and nutritional treatment of late-onset diabetes mellitus (CONTROL DM) trial results. Diabet Med. 2004;21(10):1082–9. doi:10.1111/j.1464-5491.2004.01289.x.

    Article  CAS  PubMed  Google Scholar 

  166. Cortigiani L, Rigo F, Gherardi S, Sicari R, Galderisi M, Bovenzi F, Picano E. Additional prognostic value of coronary flow reserve in diabetic and nondiabetic patients with negative dipyridamole stress echocardiography by wall motion criteria. J Am Coll Cardiol. 2007;50(14):1354–61. doi:10.1016/j.jacc.2007.06.027.

    Article  PubMed  Google Scholar 

  167. Erdogan D, Akcay S, Yucel H, Ersoy IH, Icli A, Kutlucan A, Arslan A, Yener M, Ozaydin M, Tamer MN. The effects of good glycaemic control on left ventricular and coronary endothelial functions in patients with poorly controlled Type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2014. doi:10.1111/cen.12520.

    Google Scholar 

  168. Li YJ, Hyun MH, Rha SW, Chen KY, Jin Z, Dang Q, Park CM, Lee JE, Park JY, Choi CU, Na JO, Lim HE, Kim JW, Kim EJ, Park CG, Seo HS, Oh DJ. Diabetes mellitus is not a risk factor for coronary artery spasm as assessed by an intracoronary acetylcholine provocation test: angiographic and clinical characteristics of 986 patients. J Invasive Cardiol. 2014;26(6):234–9.

    CAS  PubMed  Google Scholar 

  169. Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, Hammes HP, Huikuri H, Marre M, Marx N, Mellbin L, Ostergren J, Patrono C, Seferovic P, Sousa Uva M, Taskinen MR, Tendera M, Tuomilehto J, Valensi P, Zamorano JL. ESC guidelines on diabetes, pre-diabetes and diseases of the cardiovascular system developed in cooperation with the EASD. Kardiol Pol. 2013;71 Suppl 11:S319–94. doi:10.5603/KP.2013.0289.

    PubMed  Google Scholar 

  170. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7. doi:10.1001/jama.295.14.1681.

    Article  CAS  PubMed  Google Scholar 

  171. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–54. doi:10.2337/db08-0063.

    Article  CAS  PubMed  Google Scholar 

  172. Torimoto K, Okada Y, Mori H, Tanaka Y. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc Diabetol. 2013;12:1. doi:10.1186/1475-2840-12-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vehkavaara S, Yki-Jarvinen H. 3.5 years of insulin therapy with insulin glargine improves in vivo endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2004;24(2):325–30. doi:10.1161/01.ATV.0000113817.48983.c5.

    Article  CAS  PubMed  Google Scholar 

  174. Antoniades C, Tousoulis D, Marinou K, Papageorgiou N, Bosinakou E, Tsioufis C, Stefanadi E, Latsios G, Tentolouris C, Siasos G, Stefanadis C. Effects of insulin dependence on inflammatory process, thrombotic mechanisms and endothelial function, in patients with type 2 diabetes mellitus and coronary atherosclerosis. Clin Cardiol. 2007;30(6):295–300. doi:10.1002/clc.20101.

    Article  PubMed  Google Scholar 

  175. Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem. 2009;16(1):94–112.

    Article  CAS  PubMed  Google Scholar 

  176. Rask-Madsen C, King GL. Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(1):46–56. doi:10.1038/ncpendmet0366.

    Article  CAS  PubMed  Google Scholar 

  177. Nathanson D, Nystrom T. Hypoglycemic pharmacological treatment of type 2 diabetes: targeting the endothelium. Mol Cell Endocrinol. 2009;297(1–2):112–26. doi:10.1016/j.mce.2008.11.016.

    Article  CAS  PubMed  Google Scholar 

  178. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37(5):1344–50.

    Article  CAS  PubMed  Google Scholar 

  179. Pitocco D, Zaccardi F, Tarzia P, Milo M, Scavone G, Rizzo P, Pagliaccia F, Nerla R, Di Franco A, Manto A, Rocca B, Lanza GA, Crea F, Ghirlanda G. Metformin improves endothelial function in type 1 diabetic subjects: a pilot, placebo-controlled randomized study. Diabetes Obes Metab. 2013;15(5):427–31. doi:10.1111/dom.12041.

    Article  CAS  PubMed  Google Scholar 

  180. Jensterle M, Sebestjen M, Janez A, Prezelj J, Kocjan T, Keber I, Pfeifer M. Improvement of endothelial function with metformin and rosiglitazone treatment in women with polycystic ovary syndrome. Eur J Endocrinol. 2008;159(4):399–406. doi:10.1530/EJE-08-0507.

    Article  CAS  PubMed  Google Scholar 

  181. Vitale C, Mercuro G, Cornoldi A, Fini M, Volterrani M, Rosano GM. Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med. 2005;258(3):250–6. doi:10.1111/j.1365-2796.2005.01531.x.

    Article  CAS  PubMed  Google Scholar 

  182. de Aguiar LG, Bahia LR, Villela N, Laflor C, Sicuro F, Wiernsperger N, Bottino D, Bouskela E. Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care. 2006;29(5):1083–9. doi:10.2337/diacare.2951083.

    Article  PubMed  CAS  Google Scholar 

  183. Kelly AS, Bergenstal RM, Gonzalez-Campoy JM, Katz H, Bank AJ. Effects of exenatide vs. metformin on endothelial function in obese patients with pre-diabetes: a randomized trial. Cardiovasc Diabetol. 2012;11:64. doi:10.1186/1475-2840-11-64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Natali A, Baldeweg S, Toschi E, Capaldo B, Barbaro D, Gastaldelli A, Yudkin JS, Ferrannini E. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care. 2004;27(6):1349–57.

    Article  CAS  PubMed  Google Scholar 

  185. Phung OJ, Schwartzman E, Allen RW, Engel SS, Rajpathak SN. Sulphonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med. 2013;30(10):1160–71. doi:10.1111/dme.12232.

    Article  CAS  PubMed  Google Scholar 

  186. Hemmingsen B, Schroll JB, Lund SS, Wetterslev J, Gluud C, Vaag A, Sonne DP, Lundstrom LH, Almdal T. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013;4, CD009008. doi:10.1002/14651858.CD009008.pub2.

    Google Scholar 

  187. Rakel A, Renier G, Roussin A, Buithieu J, Mamputu JC, Serri O. Beneficial effects of gliclazide modified release compared with glibenclamide on endothelial activation and low-grade inflammation in patients with type 2 diabetes. Diabetes Obes Metab. 2007;9(1):127–9. doi:10.1111/j.1463-1326.2006.00571.x.

    Article  CAS  PubMed  Google Scholar 

  188. Riveline JP, Danchin N, Ledru F, Varroud-Vial M, Charpentier G. Sulfonylureas and cardiovascular effects: from experimental data to clinical use. Available data in humans and clinical applications. Diabetes Metab. 2003;29(3):207–22.

    Article  CAS  PubMed  Google Scholar 

  189. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18. doi:10.1056/NEJMra041001.

    Article  PubMed  Google Scholar 

  190. Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD. PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension. 2004;43(3):661–6. doi:10.1161/01.HYP.0000116303.71408.c2.

    Article  CAS  PubMed  Google Scholar 

  191. Hwang J, Kleinhenz DJ, Lassegue B, Griendling KK, Dikalov S, Hart CM. Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol. 2005;288(4):C899–905. doi:10.1152/ajpcell.00474.2004.

    Article  CAS  PubMed  Google Scholar 

  192. Calnek DS, Mazzella L, Roser S, Roman J, Hart CM. Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  193. Pistrosch F, Passauer J, Fischer S, Fuecker K, Hanefeld M, Gross P. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care. 2004;27(2):484–90.

    Article  CAS  PubMed  Google Scholar 

  194. Martens FM, Visseren FL, de Koning EJ, Rabelink TJ. Short-term pioglitazone treatment improves vascular function irrespective of metabolic changes in patients with type 2 diabetes. J Cardiovasc Pharmacol. 2005;46(6):773–8.

    Article  CAS  PubMed  Google Scholar 

  195. Campia U, Matuskey LA, Panza JA. Peroxisome proliferator-activated receptor-gamma activation with pioglitazone improves endothelium-dependent dilation in nondiabetic patients with major cardiovascular risk factors. Circulation. 2006;113(6):867–75. doi:10.1161/CIRCULATIONAHA.105.549618.

    Article  CAS  PubMed  Google Scholar 

  196. Sidhu JS, Cowan D, Kaski JC. Effects of rosiglitazone on endothelial function in men with coronary artery disease without diabetes mellitus. Am J Cardiol. 2004;94(2):151–6. doi:10.1016/j.amjcard.2004.03.051.

    Article  CAS  PubMed  Google Scholar 

  197. Linscheid P, Keller U, Blau N, Schaer DJ, Muller B. Diminished production of nitric oxide synthase cofactor tetrahydrobiopterin by rosiglitazone in adipocytes. Biochem Pharmacol. 2003;65(4):593–8.

    Article  CAS  PubMed  Google Scholar 

  198. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298(10):1180–8. doi:10.1001/jama.298.10.1180.

    Article  CAS  PubMed  Google Scholar 

  199. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71. doi:10.1056/NEJMoa072761.

    Article  CAS  PubMed  Google Scholar 

  200. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M, McMurray JJ, Team RS. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35. doi:10.1016/S0140-6736(09)60953-3.

    Article  CAS  PubMed  Google Scholar 

  201. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298(10):1189–95. doi:10.1001/jama.298.10.1189.

    Article  CAS  PubMed  Google Scholar 

  202. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J, Investigators PR. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89. doi:10.1016/S0140-6736(05)67528-9.

    Article  CAS  PubMed  Google Scholar 

  203. Standl E, Schnell O, Ceriello A. Postprandial hyperglycemia and glycemic variability: should we care? Diabetes Care. 2011;34 Suppl 2:S120–7. doi:10.2337/dc11-s206.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, Group S-NTR. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359(9323):2072–7. doi:10.1016/S0140-6736(02)08905-5.

    Article  Google Scholar 

  205. Raz I, Wilson PW, Strojek K, Kowalska I, Bozikov V, Gitt AK, Jermendy G, Campaigne BN, Kerr L, Milicevic Z, Jacober SJ. Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care. 2009;32(3):381–6. doi:10.2337/dc08-1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Group NS, Holman RR, Haffner SM, McMurray JJ, Bethel MA, Holzhauer B, Hua TA, Belenkov Y, Boolell M, Buse JB, Buckley BM, Chacra AR, Chiang FT, Charbonnel B, Chow CC, Davies MJ, Deedwania P, Diem P, Einhorn D, Fonseca V, Fulcher GR, Gaciong Z, Gaztambide S, Giles T, Horton E, Ilkova H, Jenssen T, Kahn SE, Krum H, Laakso M, Leiter LA, Levitt NS, Mareev V, Martinez F, Masson C, Mazzone T, Meaney E, Nesto R, Pan C, Prager R, Raptis SA, Rutten GE, Sandstroem H, Schaper F, Scheen A, Schmitz O, Sinay I, Soska V, Stender S, Tamas G, Tognoni G, Tuomilehto J, Villamil AS, Vozar J, Califf RM. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76. doi:10.1056/NEJMoa1001122.

    Article  Google Scholar 

  207. Shimabukuro M, Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study. J Clin Endocrinol Metab. 2006;91(3):837–42. doi:10.1210/jc.2005-1566.

    Article  CAS  PubMed  Google Scholar 

  208. Wascher TC, Schmoelzer I, Wiegratz A, Stuehlinger M, Mueller-Wieland D, Kotzka J, Enderle M. Reduction of postchallenge hyperglycaemia prevents acute endothelial dysfunction in subjects with impaired glucose tolerance. Eur J Clin Invest. 2005;35(9):551–7. doi:10.1111/j.1365-2362.2005.01550.x.

    Article  CAS  PubMed  Google Scholar 

  209. Pistrosch F, Schaper F, Passauer J, Koehler C, Bornstein SR, Hanefeld M. Effects of the alpha glucosidase inhibitor acarbose on endothelial function after a mixed meal in newly diagnosed type 2 diabetes. Hormone Metabol Res. 2009;41(2):104–8. doi:10.1055/s-0028-1103276.

    Article  CAS  Google Scholar 

  210. Ayaori M, Iwakami N, Uto-Kondo H, Sato H, Sasaki M, Komatsu T, Iizuka M, Takiguchi S, Yakushiji E, Nakaya K, Yogo M, Ogura M, Takase B, Murakami T, Ikewaki K. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc. 2013;2(1), e003277. doi:10.1161/JAHA.112.003277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–50. doi:10.1161/CIRCULATIONAHA.107.739938.

    Article  CAS  PubMed  Google Scholar 

  212. Matsubara J, Sugiyama S, Sugamura K, Nakamura T, Fujiwara Y, Akiyama E, Kurokawa H, Nozaki T, Ohba K, Konishi M, Maeda H, Izumiya Y, Kaikita K, Sumida H, Jinnouchi H, Matsui K, Kim-Mitsuyama S, Takeya M, Ogawa H. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol. 2012;59(3):265–76. doi:10.1016/j.jacc.2011.07.053.

    Article  CAS  PubMed  Google Scholar 

  213. Advani A, Bugyei-Twum A, Connelly KA. Cardiovascular effects of incretins in diabetes. Canadian J Diabet. 2013;37(5):309–14. doi:10.1016/j.jcjd.2013.06.010.

    Article  Google Scholar 

  214. Tesauro M, Schinzari F, Adamo A, Rovella V, Martini F, Mores N, Barini A, Pitocco D, Ghirlanda G, Lauro D, Campia U, Cardillo C. Effects of GLP-1 on forearm vasodilator function and glucose disposal during hyperinsulinemia in the metabolic syndrome. Diabetes Care. 2013;36(3):683–9. doi:10.2337/dc12-0763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahren B, Sjoholm A. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287(6):E1209–15. doi:10.1152/ajpendo.00237.2004.

    Article  PubMed  CAS  Google Scholar 

  216. Kubota Y, Miyamoto M, Takagi G, Ikeda T, Kirinoki-Ichikawa S, Tanaka K, Mizuno K. The dipeptidyl peptidase-4 inhibitor sitagliptin improves vascular endothelial function in type 2 diabetes. J Korean Med Sci. 2012;27(11):1364–70. doi:10.3346/jkms.2012.27.11.1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. van Poppel PC, Netea MG, Smits P, Tack CJ. Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care. 2011;34(9):2072–7. doi:10.2337/dc10-2421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Matsubara J, Sugiyama S, Akiyama E, Iwashita S, Kurokawa H, Ohba K, Maeda H, Fujisue K, Yamamoto E, Kaikita K, Hokimoto S, Jinnouchi H, Ogawa H. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J. 2013;77(5):1337–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Valenzuela-García, L.F., Matsuzawa, Y., Lerman, A. (2017). The Effect of Cardiovascular Risk Factors on the Coronary Circulation. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics