Skip to main content

Abstract

Although microcirculatory dysfunction is linked to multiple cardiac and non-cardiac conditions, a conclusive diagnosis of microcirculatory dysfunction is rarely made in everyday clinical practice. As discussed below, assessment of the microcirculation may contribute to understanding the role of small vessel disease in the manifestations of chronic conditions, the direct impact of acute cardiac events on the microvasculature [1], or even to detect early anomalies in the coronary circulation occurring before the development of pathological changes in the large epicardial vessels [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teunissen PFA, de Waard GA, Hollander MR, Robbers LFHJ, Danad I, Biesbroek PS, et al. Doppler-derived intracoronary physiology indices predict the occurrence of microvascular injury and microvascular perfusion deficits after angiographically successful primary percutaneous coronary intervention. Circ Cardiovasc Interv. 2015;8(3), e001786.

    Article  PubMed  Google Scholar 

  2. Beyer AM, Gutterman DD. Regulation of the human coronary microcirculation. J Mol Cell Cardiol. 2012;52(4):814–21.

    Article  CAS  PubMed  Google Scholar 

  3. Feigl EO. Coronary physiology. Physiol Rev. 1983;63(1):1–205.

    CAS  PubMed  Google Scholar 

  4. von Restorff W, Holtz J, Bassenge E. Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflugers Arch. 1977;372(2):181–5.

    Article  Google Scholar 

  5. Duncker DJ, Koller A, Merkus D, Canty Jr JM. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis. 2015;57(5):409–22.

    Article  PubMed  Google Scholar 

  6. Schelbert HR. Anatomy and physiology of coronary blood flow. J Nucl Cardiol. 2010;17(4):545–54.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eriksson S, Nilsson J, Sturesson C. Non-invasive imaging of microcirculation: a technology review. Med Devices Auckl NZ. 2014;7:445–52.

    Google Scholar 

  8. Komaru T, Kanatsuka H, Shirato K. Coronary microcirculation: physiology and pharmacology. Pharmacol Ther. 2000;86(3):217–61.

    Article  CAS  PubMed  Google Scholar 

  9. Beltrame JF, Crea F, Camici P. Advances in coronary microvascular dysfunction. Heart Lung Circ. 2009;18(1):19–27.

    Article  PubMed  Google Scholar 

  10. Bassingthwaighte JB, Yipintsoi T, Harvey RB. Microvasculature of the dog left ventricular myocardium. Microvasc Res. 1974;7(2):229–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okun EM, Factor SM, Kirk ES. End-capillary loops in the heart: an explanation for discrete myocardial infarctions without border zones. Science. 1979;206(4418):565–7.

    Article  CAS  PubMed  Google Scholar 

  12. van Horssen P, van den Wijngaard JPHM, Brandt MJ, Hoefer IE, Spaan JAE, Siebes M. Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium. Am J Physiol Heart Circ Physiol. 2014;306(4):H496–504.

    Article  PubMed  CAS  Google Scholar 

  13. Hoffman JI. Autoregulation and heart rate. Circulation. 1990;82(5):1880–1.

    Article  CAS  PubMed  Google Scholar 

  14. Patel B, Fisher M. Therapeutic advances in myocardial microvascular resistance: unravelling the enigma. Pharmacol Ther. 2010;127(2):131–47.

    Article  CAS  PubMed  Google Scholar 

  15. Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation. 1995;92(3):518–25.

    Article  CAS  PubMed  Google Scholar 

  16. Kuo L, Davis MJ, Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol. 1988;255(6 Pt 2):H1558–62.

    CAS  PubMed  Google Scholar 

  17. Kuo L, Davis MJ, Chilian WM. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol. 1990;259(4 Pt 2):H1063–70.

    CAS  PubMed  Google Scholar 

  18. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33(22):2771–83.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jones CJ, Kuo L, Davis MJ, Chilian WM. Regulation of coronary blood flow: coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res. 1995;29(5):585–96.

    Article  CAS  PubMed  Google Scholar 

  20. Kassab GS, Lin DH, Fung YC. Morphometry of pig coronary venous system. Am J Physiol. 1994;267(6 Pt 2):H2100–13.

    CAS  PubMed  Google Scholar 

  21. Bosman J, Tangelder GJ, Oude Egbrink MG, Reneman RS, Slaaf DW. Capillary diameter changes during low perfusion pressure and reactive hyperemia in rabbit skeletal muscle. Am J Physiol. 1995;269(3 Pt 2):H1048–55.

    CAS  PubMed  Google Scholar 

  22. Matsumoto T, Kajiya F. Coronary microcirculation: physiology and mechanics. Fluid Dyn Res. 2005;37(1–2):60.

    Article  Google Scholar 

  23. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11.

    Article  PubMed  Google Scholar 

  24. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104(6):735–40.

    Article  CAS  PubMed  Google Scholar 

  25. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol. 1986;251(4 Pt 2):H779–88.

    CAS  PubMed  Google Scholar 

  26. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol. 1990;259(1 Pt 1):C3–18.

    CAS  PubMed  Google Scholar 

  27. Davis MJ, Donovitz JA, Hood JD. Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol. 1992;262(4 Pt 1):C1083–8.

    CAS  PubMed  Google Scholar 

  28. Bowles DK, Hu Q, Laughlin MH, Sturek M. Heterogeneity of L-type calcium current density in coronary smooth muscle. Am J Physiol. 1997;273(4 Pt 2):H2083–9.

    CAS  PubMed  Google Scholar 

  29. Park KS, Kim Y, Lee Y-H, Earm YE, Ho W-K. Mechanosensitive cation channels in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor. Circ Res. 2003;93(6):557–64.

    Article  CAS  PubMed  Google Scholar 

  30. Sato K, Kanatsuka H, Sekiguchi N, Akai K, Wang Y, Sugimura A, et al. Effect of an ATP sensitive potassium channel opener, levcromakalim, on coronary arterial microvessels in the beating canine heart. Cardiovasc Res. 1994;28(12):1780–6.

    Article  CAS  PubMed  Google Scholar 

  31. Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W. Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol. 2012;52(4):794–801.

    Article  CAS  PubMed  Google Scholar 

  32. Bernstein RD, Ochoa FY, Xu X, Forfia P, Shen W, Thompson CI, et al. Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circ Res. 1996;79(4):840–8.

    Article  CAS  PubMed  Google Scholar 

  33. Egashira K, Katsuda Y, Mohri M, Kuga T, Tagawa T, Kubota T, et al. Role of endothelium-derived nitric oxide in coronary vasodilatation induced by pacing tachycardia in humans. Circ Res. 1996;79(2):331–5.

    Article  CAS  PubMed  Google Scholar 

  34. Schindler TH, Nitzsche EU, Olschewski M, Brink I, Mix M, Prior J, et al. PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J Nucl Med Off Publ Soc Nucl Med. 2004;45(3):419–28.

    Google Scholar 

  35. Hearse DJ, Maxwell L, Saldanha C, Gavin JB. The myocardial vasculature during ischemia and reperfusion: a target for injury and protection. J Mol Cell Cardiol. 1993;25(7):759–800.

    Article  CAS  PubMed  Google Scholar 

  36. Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998;18(5):677–85.

    Article  CAS  PubMed  Google Scholar 

  37. Canty JMJ, Schwartz JS. Nitric oxide mediates flow-dependent epicardial coronary vasodilation to changes in pulse frequency but not mean flow in conscious dogs. Circulation. 1994;89(1):375–84.

    Article  CAS  PubMed  Google Scholar 

  38. Koller A, Kaley G. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ Res. 1990;67(2):529–34.

    Article  CAS  PubMed  Google Scholar 

  39. Huang A, Sun D, Carroll MA, Jiang H, Smith CJ, Connetta JA, et al. EDHF mediates flow-induced dilation in skeletal muscle arterioles of female eNOS-KO mice. Am J Physiol Heart Circ Physiol. 2001;280(6):H2462–9.

    CAS  PubMed  Google Scholar 

  40. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664–6.

    Article  CAS  PubMed  Google Scholar 

  41. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109–42.

    CAS  PubMed  Google Scholar 

  42. Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol. 1999;34(6):879–86.

    Article  CAS  PubMed  Google Scholar 

  43. Armstrong R. The physiological role and pharmacological potential of nitric oxide in neutrophil activation. Int Immunopharmacol. 2001;1(8):1501–12.

    Article  CAS  PubMed  Google Scholar 

  44. Lee RT, Libby P. The unstable atheroma. Arterioscler Thromb Vasc Biol. 1997;17(10):1859–67.

    Article  CAS  PubMed  Google Scholar 

  45. Verma S, Anderson TJ. Fundamentals of endothelial function for the clinical cardiologist. Circulation. 2002;105(5):546–9.

    Article  CAS  PubMed  Google Scholar 

  46. Miura H, Wachtel RE, Liu Y, Loberiza FRJ, Saito T, Miura M, et al. Flow-induced dilation of human coronary arterioles: important role of Ca(2+)-activated K(+) channels. Circulation. 2001;103(15):1992–8.

    Article  CAS  PubMed  Google Scholar 

  47. Ohashi J, Sawada A, Nakajima S, Noda K, Takaki A, Shimokawa H. Mechanisms for enhanced endothelium-derived hyperpolarizing factor-mediated responses in microvessels in mice. Circ J Off J Jpn Circ Soc. 2012;76(7):1768–79.

    CAS  Google Scholar 

  48. Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, et al. Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med. 2008;205(9):2053–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hellsten Y, Nyberg M, Jensen LG, Mortensen SP. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol. 2012;590(24):6297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.

    Article  CAS  PubMed  Google Scholar 

  51. Griggs DMJ, Chilian WM, Boatwright RB, Shoji T, Williams DO. Evidence against significant resting alpha-adrenergic coronary vasoconstrictor tone. Fed Proc. 1984;43(14):2873–7.

    PubMed  Google Scholar 

  52. Chilian WM, Boatwright RB, Shoji T, Griggs DMJ. Evidence against significant resting sympathetic coronary vasoconstrictor tone in the conscious dog. Circ Res. 1981;49(4):866–76.

    Article  CAS  PubMed  Google Scholar 

  53. Muller JM, Davis MJ, Chilian WM. Integrated regulation of pressure and flow in the coronary microcirculation. Cardiovasc Res. 1996;32(4):668–78.

    Article  CAS  PubMed  Google Scholar 

  54. DeFily DV, Patterson JL, Chilian WM. Endogenous adenosine modulates alpha 2- but not alpha 1-adrenergic constriction of coronary arterioles. Am J Physiol. 1995;268(6 Pt 2):H2487–94.

    CAS  PubMed  Google Scholar 

  55. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    Article  CAS  PubMed  Google Scholar 

  56. Pries AR, Reglin B. Coronary microcirculatory pathophysiology: can we afford it to remain a black box? Eur Heart J. 2016;38(7):478-488.

    Google Scholar 

  57. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59(7):655–62.

    Article  CAS  PubMed  Google Scholar 

  58. Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation. 2010;121(21):2317–25.

    Article  PubMed  Google Scholar 

  59. Moreau P, d’Uscio LV, Luscher TF. Structure and reactivity of small arteries in aging. Cardiovasc Res. 1998;37(1):247–53.

    Article  CAS  PubMed  Google Scholar 

  60. Antony I, Nitenberg A, Foult J-M, Aptecar E. Coronary vasodilator reserve in untreated and treated hypertensive patients with and without left ventricular hypertrophy. J Am Coll Cardiol. 1993;22(2):514–20.

    Article  CAS  PubMed  Google Scholar 

  61. Rizzoni D, Palombo C, Porteri E, Muiesan ML, Kozàkovà M, La Canna G, et al. Relationships between coronary flow vasodilator capacity and small artery remodelling in hypertensive patients. J Hypertens. 2003;21(3):625–31.

    Article  CAS  PubMed  Google Scholar 

  62. Nahser PJJ, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation. 1995;91(3):635–40.

    Article  PubMed  Google Scholar 

  63. Nitenberg. Am J Cardiol. 1985;55(6):748–54.

    Google Scholar 

  64. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation. 1994;90(2):808–17.

    Article  CAS  PubMed  Google Scholar 

  65. Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, Luscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  66. Dagres N, Saller B, Haude M, Husing J, von Birgelen C, Schmermund A, et al. Insulin sensitivity and coronary vasoreactivity: insulin sensitivity relates to adenosine-stimulated coronary flow response in human subjects. Clin Endocrinol (Oxf). 2004;61(6):724–31.

    Article  CAS  Google Scholar 

  67. Satoh K, Fukumoto Y, Shimokawa H. Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2011;301(2):H287–96.

    Article  CAS  PubMed  Google Scholar 

  68. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027–35.

    Article  CAS  PubMed  Google Scholar 

  69. Hiemann NE, Wellnhofer E, Knosalla C, Lehmkuhl HB, Stein J, Hetzer R, et al. Prognostic impact of microvasculopathy on survival after heart transplantation: evidence from 9713 endomyocardial biopsies. Circulation. 2007;116(11):1274–82.

    Article  PubMed  Google Scholar 

  70. Chilian WM, et al. Coronary microcirculation in health and disease summary of an NHLBI workshop. Circulation. 1997;95(2):522–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lerman A, Holmes DR, Herrmann J, Gersh BJ. Microcirculatory dysfunction in ST-elevation myocardial infarction: cause, consequence, or both? Eur Heart J. 2007;28(7):788–97.

    Article  PubMed  Google Scholar 

  72. Nemes A, Forster T, Geleijnse ML, Kutyifa V, Neu K, Soliman OII, et al. The additional prognostic power of diabetes mellitus on coronary flow reserve in patients with suspected coronary artery disease. Diabetes Res Clin Pract. 2007;78(1):126–31.

    Article  PubMed  Google Scholar 

  73. Escaned J, Flores A, Garcia-Pavia P, Segovia J, Jimenez J, Aragoncillo P, et al. Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: validation with endomyocardial sampling in cardiac allografts. Circulation. 2009;120(16):1561–8.

    Article  CAS  PubMed  Google Scholar 

  74. Hong H. Remodeling of small intramyocardial coronary arteries distal to a severe epicardial coronary artery stenosis. Arterioscler Thromb Vasc Biol. 2002;22(12):2059–65.

    Article  CAS  PubMed  Google Scholar 

  75. Langille BL, Bendeck MP, Keeley FW. Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol. 1989;256(4 Pt 2):H931–9.

    CAS  PubMed  Google Scholar 

  76. Miller VM, Vanhoutte PM. Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am J Physiol. 1988;255(3 Pt 2):H446–51.

    CAS  PubMed  Google Scholar 

  77. Loscalzo J. Nitric oxide and vascular disease. N Engl J Med. 1995;333(4):251–3.

    Article  CAS  PubMed  Google Scholar 

  78. Ito A, Egashira K, Kadokami T, Fukumoto Y, Takayanagi T, Nakaike R, et al. Chronic inhibition of endothelium-derived nitric oxide synthesis causes coronary microvascular structural changes and hyperreactivity to serotonin in pigs. Circulation. 1995;92(9):2636–44.

    Article  CAS  PubMed  Google Scholar 

  79. Yoon Y, Uchida S, Masuo O, Cejna M, Park J-S, Gwon H, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005;111(16):2073–85.

    Article  CAS  PubMed  Google Scholar 

  80. Jenkins JT, Boyle JJ, McKay IC, Richens D, McPhaden AR, Lindop GB. Vascular remodelling in intramyocardial resistance vessels in hypertensive human cardiac transplant recipients. Heart Br Card Soc. 1997;77(4):353–6.

    CAS  Google Scholar 

  81. O’Gara PT, Bonow RO, Maron BJ, Damske BA, Van Lingen A, Bacharach SL, et al. Myocardial perfusion abnormalities in patients with hypertrophic cardiomyopathy: assessment with thallium-201 emission computed tomography. Circulation. 1987;76(6):1214–23.

    Article  PubMed  Google Scholar 

  82. Tsagalou EP, Anastasiou-Nana M, Agapitos E, Gika A, Drakos SG, Terrovitis JV, et al. Depressed coronary flow reserve is associated with decreased myocardial capillary density in patients with heart failure due to idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2008;52(17):1391–8.

    Article  PubMed  Google Scholar 

  83. Neglia D, Parodi O, Gallopin M, Sambuceti G, Giorgetti A, Pratali L, et al. Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation. 1995;92(4):796–804.

    Article  CAS  PubMed  Google Scholar 

  84. Canetti M, Akhter MW, Lerman A, Karaalp IS, Zell JA, Singh H, et al. Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol. 2003;92(10):1246–9.

    Article  PubMed  Google Scholar 

  85. van den Heuvel AF, van Veldhuisen DJ, van der Wall EE, Blanksma PK, Siebelink H-MJ, Vaalburg WM, et al. Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2000;35(1):19–28.

    Article  PubMed  Google Scholar 

  86. Prasad A, Higano ST, Al Suwaidi J, Holmes DRJ, Mathew V, Pumper G, et al. Abnormal coronary microvascular endothelial function in humans with asymptomatic left ventricular dysfunction. Am Heart J. 2003;146(3):549–54.

    Article  PubMed  Google Scholar 

  87. Skalidis EI, Parthenakis FI, Patrianakos AP, Hamilos MI, Vardas PE. Regional coronary flow and contractile reserve in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2004;44(10):2027–32.

    Article  PubMed  Google Scholar 

  88. Krams R, Kofflard MJ, Duncker DJ, von Birgelen C, Carlier S, Kliffen M, et al. Decreased coronary flow reserve in hypertrophic cardiomyopathy is related to remodeling of the coronary microcirculation. Circulation. 1998;97:230–3.

    Article  CAS  PubMed  Google Scholar 

  89. Takemura G, Takatsu Y, Fujiwara H. Luminal narrowing of coronary capillaries in human hypertrophic hearts: an ultrastructural morphometrical study using endomyocardial biopsy specimens. Heart Br Card Soc. 1998;79(1):78–85.

    CAS  Google Scholar 

  90. Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38(2):291–300.

    Article  CAS  PubMed  Google Scholar 

  91. Hearse DJ, Humphrey SM, Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol. 1973;5(4):395–407.

    Article  CAS  PubMed  Google Scholar 

  92. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54(6):1496–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation. 1985;71(4):699–708.

    Article  CAS  PubMed  Google Scholar 

  94. Saber RS, Edwards WD, Bailey KR, McGovern TW, Schwartz RS, Holmes DRJ. Coronary embolization after balloon angioplasty or thrombolytic therapy: an autopsy study of 32 cases. J Am Coll Cardiol. 1993;22(5):1283–8.

    Article  CAS  PubMed  Google Scholar 

  95. Sato H, Iida H, Tanaka A, Tanaka H, Shimodouzono S, Uchida E, et al. The decrease of plaque volume during percutaneous coronary intervention has a negative impact on coronary flow in acute myocardial infarction: A major role of percutaneous coronary intervention-induced embolization. J Am Coll Cardiol. 2004;44(2):300–4.

    Article  PubMed  Google Scholar 

  96. Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T, et al. Plaque gruel of atheromatous coronary lesion may contribute to the no-reflow phenomenon in patients with acute coronary syndrome. Circulation. 2002;106(13):1672–7.

    Article  PubMed  Google Scholar 

  97. Iwakura K, Ito H, Kawano S, Shintani Y, Yamamoto K, Kato A, et al. Predictive factors for development of the no-reflow phenomenon in patients with reperfused anterior wall acute myocardial infarction. J Am Coll Cardiol. 2001;38(2):472–7.

    Article  CAS  PubMed  Google Scholar 

  98. Tanaka A, Kawarabayashi T, Nishibori Y, Sano T, Nishida Y, Fukuda D, et al. No-reflow phenomenon and lesion morphology in patients with acute myocardial infarction. Circulation. 2002;105(18):2148–52.

    Article  PubMed  Google Scholar 

  99. Robbers LFHJ, Eerenberg ES, Teunissen PFA, Jansen MF, Hollander MR, Horrevoets AJG, et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34(30):2346–53.

    Article  CAS  PubMed  Google Scholar 

  100. Manciet LH, Poole DC, McDonagh PF, Copeland JG, Mathieu-Costello O. Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon. Am J Physiol. 1994;266(4 Pt 2):H1541–50.

    CAS  PubMed  Google Scholar 

  101. Dunn RB, Griggs DMJ. Ventricular filling pressure as a determinant of coronary blood flow during ischemia. Am J Physiol. 1983;244(3):H429–36.

    CAS  PubMed  Google Scholar 

  102. Breisch EA, Houser SR, Carey RA, Spann JF, Bove AA. Myocardial blood flow and capillary density in chronic pressure overload of the feline left ventricle. Cardiovasc Res. 1980;14(8):469–75.

    Article  CAS  PubMed  Google Scholar 

  103. Rajappan K, Rimoldi OE, Dutka DP, Ariff B, Pennell DJ, Sheridan DJ, et al. Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation. 2002;105(4):470–6.

    Article  PubMed  Google Scholar 

  104. Gregorini L, Marco J, Farah B, Bernies M, Palombo C, Kozakova M, et al. Effects of selective alpha1- and alpha2-adrenergic blockade on coronary flow reserve after coronary stenting. Circulation. 2002;106(23):2901–7.

    Article  CAS  PubMed  Google Scholar 

  105. Sorop O, Merkus D, de Beer VJ, Houweling B, Pistea A, McFalls EO, et al. Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ Res. 2008;102(7):795–803.

    Article  CAS  PubMed  Google Scholar 

  106. Ako J, Takenaka K, Uno K, Nakamura F, Shoji T, Iijima K, et al. Reversible left ventricular systolic dysfunction--reversibility of coronary microvascular abnormality. Jpn Heart J. 2001;42(3):355–63.

    Article  CAS  PubMed  Google Scholar 

  107. Kume T, Akasaka T, Kawamoto T, Yoshitani H, Watanabe N, Neishi Y, et al. Assessment of coronary microcirculation in patients with takotsubo-like left ventricular dysfunction. Circ J Off J Jpn Circ Soc. 2005;69(8):934–9.

    Google Scholar 

  108. Elesber A, Lerman A, Bybee KA, Murphy JG, Barsness G, Singh M, et al. Myocardial perfusion in apical ballooning syndrome correlate of myocardial injury. Am Heart J. 2006;152(3):469.e9–13.

    Article  Google Scholar 

  109. Rigo F, Sicari R, Citro R, Ossena G, Buja P, Picano E. Diffuse, marked, reversible impairment in coronary microcirculation in stress cardiomyopathy: a Doppler transthoracic echo study. Ann Med. 2009;41(6):462–70.

    Article  PubMed  Google Scholar 

  110. Galiuto L, Garramone B, Scarà A, Rebuzzi AG, Crea F, La Torre G, et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling. J Am Coll Cardiol. 2008;51(5):552–9.

    Article  PubMed  Google Scholar 

  111. Martin EA, Prasad A, Rihal CS, Lerman LO, Lerman A. Endothelial function and vascular response to mental stress are impaired in patients with apical ballooning syndrome. J Am Coll Cardiol. 2010;56(22):1840–6.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Marzilli M, Merz CNB, Boden WE, Bonow RO, Capozza PG, Chilian WM, et al. Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link! J Am Coll Cardiol. 2012;60(11):951–6.

    Article  PubMed  Google Scholar 

  113. Cemin R, Erlicher A, Fattor B, Pitscheider W, Cevese A. Reduced coronary flow reserve and parasympathetic dysfunction in patients with cardiovascular syndrome X. Coron Artery Dis. 2008;19(1):1–7.

    Article  PubMed  Google Scholar 

  114. Wittstein IS, Thiemann DR, Lima JAC, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48.

    Article  CAS  PubMed  Google Scholar 

  115. Rosen SD, Boyd H, Rhodes CG, Kaski JC, Camici PG. Myocardial beta-adrenoceptor density and plasma catecholamines in syndrome X. Am J Cardiol. 1996;78(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  116. Frobert O, Molgaard H, Botker HE, Bagger JP. Autonomic balance in patients with angina and a normal coronary angiogram. Eur Heart J. 1995;16(10):1356–60.

    Article  CAS  PubMed  Google Scholar 

  117. Di Franco A, Lanza GA, Di Monaco A, Sestito A, Lamendola P, Nerla R, et al. Coronary microvascular function and cortical pain processing in patients with silent positive exercise testing and normal coronary arteries. Am J Cardiol. 2012;109(12):1705–10.

    Article  PubMed  Google Scholar 

  118. Aslan G, Sade LE, Yetis B, Bozbas H, Eroglu S, Pirat B, et al. Flow in the left anterior descending coronary artery in patients with migraine headache. Am J Cardiol. 2013;112(10):1540–4.

    Article  PubMed  Google Scholar 

  119. Chade AR, Brosh D, Higano ST, Lennon RJ, Lerman LO, Lerman A. Mild renal insufficiency is associated with reduced coronary flow in patients with non-obstructive coronary artery disease. Kidney Int. 2006;69(2):266–71.

    Article  CAS  PubMed  Google Scholar 

  120. Sundell J. et al. Diabetologia. 2004;47(4):725–31.

    Google Scholar 

  121. Tondi P, Santoliquido A, Di Giorgio A, Sestito A, Sgueglia GA, Flore R, et al. Endothelial dysfunction as assessed by flow-mediated dilation in patients with cardiac syndrome X: role of inflammation. Eur Rev Med Pharmacol Sci. 2011;15(9):1074–7.

    CAS  PubMed  Google Scholar 

  122. Libby P, Nathan DM, Abraham K, Brunzell JD, Fradkin JE, Haffner SM, et al. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on Cardiovascular Complications of Type 1 Diabetes Mellitus. Circulation. 2005;111(25):3489–93.

    Article  PubMed  Google Scholar 

  123. Recio-Mayoral A, Rimoldi OE, Camici PG, Kaski JC. Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging. 2013;6(6):660–7.

    Article  PubMed  Google Scholar 

  124. Johnson BD, Shaw LJ, Pepine CJ, Reis SE, Kelsey SF, Sopko G, et al. Persistent chest pain predicts cardiovascular events in women without obstructive coronary artery disease: results from the NIH-NHLBI-sponsored Women’s Ischaemia Syndrome Evaluation (WISE) study. Eur Heart J. 2006;27(12):1408–15.

    Article  PubMed  Google Scholar 

  125. Sicari R, Palinkas A, Pasanisi EG, Venneri L, Picano E. Long-term survival of patients with chest pain syndrome and angiographically normal or near-normal coronary arteries: the additional prognostic value of dipyridamole echocardiography test (DET). Eur Heart J. 2005;26(20):2136–41.

    Article  PubMed  Google Scholar 

  126. Russo G, Di Franco A, Lamendola P, Tarzia P, Nerla R, Stazi A, et al. Lack of effect of nitrates on exercise stress test results in patients with microvascular angina. Cardiovasc Drugs Ther Spons Int Soc Cardiovasc Pharmacother. 2013;27(3):229–34.

    Article  CAS  Google Scholar 

  127. Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41(8):1387–93.

    Article  PubMed  CAS  Google Scholar 

  128. Britten MB. Coron Artery Dis. 2004;15(5):259–64.

    Google Scholar 

  129. Marks DS. J Clin Hypertens (Greenwich). 2004;6(6):304–9.

    Google Scholar 

  130. Sicari R. Am J Cardiol. 2009;103(5):626–31.

    Google Scholar 

  131. Herzog BA. Am Coll Cardiol. 2009;54(2):150–6.

    Google Scholar 

  132. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia. J Am Coll Cardiol. 2010;55(25):2825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vermeltfoort IA. Neth Heart J. 2012;20(9):365–71.

    Google Scholar 

  134. Romeo F. Am J Cardiol. 1993;71(8):669–73.

    Google Scholar 

  135. Russo G. Cardiovasc Drugs Ther. 2013;27(3):229–34.

    Google Scholar 

  136. Shaw LJ. Circulation. 2006;114(9):894–904.

    Google Scholar 

  137. Prior JO, Quinones MJ, Hernandez-Pampaloni M, Facta AD, Schindler TH, Sayre JW, et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation. 2005;111(18):2291–8.

    Article  CAS  PubMed  Google Scholar 

  138. Echavarria-Pinto M, van de Hoef TP, Serruys PW, Piek JJ, Escaned J. Facing the complexity of ischaemic heart disease with intracoronary pressure and flow measurements: beyond fractional flow reserve interrogation of the coronary circulation. Curr Opin Cardiol. 2014;29(6):564–70.

    Article  PubMed  Google Scholar 

  139. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126(15):1858–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med Off Publ Soc Nucl Med. 2009;50(7):1076–87.

    Google Scholar 

  141. Sorajja P, Gersh BJ, Costantini C, McLaughlin MG, Zimetbaum P, Cox DA, et al. Combined prognostic utility of ST-segment recovery and myocardial blush after primary percutaneous coronary intervention in acute myocardial infarction. Eur Heart J. 2005;26(7):667–74.

    Article  PubMed  Google Scholar 

  142. Perazzolo Marra M, Lima JAC, Iliceto S. MRI in acute myocardial infarction. Eur Heart J. 2011;32(3):284–93.

    Article  PubMed  Google Scholar 

  143. Marzilli M, Sambuceti G, Fedele S, L’Abbate A. Coronary microcirculatory vasoconstriction during ischemia in patients with unstable anging. J Am Coll Cardiol. 2000;35(2):327–34.

    Article  CAS  PubMed  Google Scholar 

  144. Gould KL, Lipscomb K, Calvert C. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation. 1975;51(6):1085–94.

    Article  CAS  PubMed  Google Scholar 

  145. Guyton RA, McClenathan JH, Michaelis LL. Evolution of regional ischemia distal to a proximal coronary stenosis: self-propagation of ischemia. Am J Cardiol. 1977;40(3):381–92.

    Article  CAS  PubMed  Google Scholar 

  146. Gorman MW, Sparks HVJ. Progressive coronary vasoconstriction during relative ischemia in canine myocardium. Circ Res. 1982;51(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  147. Sambuceti G, Marzilli M, Marraccini P, Schneider-Eicke J, Gliozheni E, Parodi O, et al. Coronary vasoconstriction during myocardial ischemia induced by rises in metabolic demand in patients with coronary artery disease. Circulation. 1997;95(12):2652–9.

    Article  CAS  PubMed  Google Scholar 

  148. Fearon WF, Shah M, Ng M, Brinton T, Wilson A, Tremmel JA, et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2008;51(5):560–5.

    Article  PubMed  Google Scholar 

  149. Lim H-S, Yoon M-H, Tahk S-J, Yang H-M, Choi B-J, Choi S-Y, et al. Usefulness of the index of microcirculatory resistance for invasively assessing myocardial viability immediately after primary angioplasty for anterior myocardial infarction. Eur Heart J. 2009;30(23):2854–60.

    Article  PubMed  Google Scholar 

  150. Bolognese L, Carrabba N, Parodi G, Santoro GM, Buonamici P, Cerisano G, et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation. 2004;109(9):1121–6.

    Article  PubMed  Google Scholar 

  151. de Waha S, Desch S, Eitel I, Fuernau G, Lurz P, Leuschner A, et al. Relationship and prognostic value of microvascular obstruction and infarct size in ST-elevation myocardial infarction as visualized by magnetic resonance imaging. Clin Res Cardiol. 2012;101(6):487–95.

    Article  PubMed  Google Scholar 

  152. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97(8):765–72.

    Article  CAS  PubMed  Google Scholar 

  153. Bekkers SCAM, Smulders MW, Passos VL, Leiner T, Waltenberger J, Gorgels APM, et al. Clinical implications of microvascular obstruction and intramyocardial haemorrhage in acute myocardial infarction using cardiovascular magnetic resonance imaging. Eur Radiol. 2010;20(11):2572–8.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Li Y, Yang D, Lu L, Wu D, Yao J, Hu X, et al. Thermodilutional confirmation of coronary microvascular dysfunction in patients with recurrent angina after successful percutaneous coronary intervention. Can J Cardiol. 2015;31(8):989–97.

    Article  PubMed  Google Scholar 

  155. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van’t Veer M. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  156. van de Hoef TP, van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SAJ, et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7(3):301–11.

    Article  PubMed  Google Scholar 

  157. Echavarria-Pinto M, Escaned J, Macias E, Medina M, Gonzalo N, Petraco R, et al. Disturbed coronary hemodynamics in vessels with intermediate stenoses evaluated with fractional flow reserve: a combined analysis of epicardial and microcirculatory involvement in ischemic heart disease. Circulation. 2013;128(24):2557–66.

    Article  PubMed  Google Scholar 

  158. Lee JM, Jung J-H, Hwang D, Park J, Fan Y, Na S-H, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol. 2016;67(10):1158–69.

    Article  PubMed  Google Scholar 

  159. Camici PG, Olivotto I, Rimoldi OE. The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol. 2012;52(4):857–64.

    Article  CAS  PubMed  Google Scholar 

  160. Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2014;12(1):48–62.

    Article  PubMed  Google Scholar 

  161. Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G, et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol. 1991;17(4):879–86.

    Article  CAS  PubMed  Google Scholar 

  162. Choudhury L, Elliott P, Rimoldi O, Ryan M, Lammertsma AA, Boyd H, et al. Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Basic Res Cardiol. 1999;94(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  163. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation. 2007;115(18):2418–25.

    Google Scholar 

  164. Knaapen P, Germans T, Camici PG, Rimoldi OE, ten Cate FJ, ten Berg JM, et al. Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294(2):H986–93.

    Article  CAS  PubMed  Google Scholar 

  165. Ismail TF, Hsu L-Y, Greve AM, Goncalves C, Jabbour A, Gulati A, et al. Coronary microvascular ischemia in hypertrophic cardiomyopathy - a pixel-wise quantitative cardiovascular magnetic resonance perfusion study. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2014;16:49.

    Google Scholar 

  166. Moon JC, Mogensen J, Elliott PM, Smith GC, Elkington AG, Prasad SK, et al. Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart Br Card Soc. 2005;91(8):1036–40.

    Article  CAS  Google Scholar 

  167. Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol. 2000;31(8):988–98.

    Article  CAS  PubMed  Google Scholar 

  168. Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;47(5):1043–8.

    Article  PubMed  Google Scholar 

  169. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16.

    Article  PubMed  Google Scholar 

  170. Treasure CB, Vita JA, Cox DA, Fish RD, Gordon JB, Mudge GH, et al. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation. 1990;81(3):772–9.

    Article  CAS  PubMed  Google Scholar 

  171. Weismuller S, Czernin J, Sun KT, Fung C, Phelps ME, Schelbert HR. Coronary vasodilatory capacity is impaired in patients with dilated cardiomyopathy. Am J Card Imaging. 1996;10(3):154–62.

    CAS  PubMed  Google Scholar 

  172. Inoue T, Sakai Y, Morooka S, Hayashi T, Takayanagi K, Yamanaka T, et al. Coronary flow reserve in patients with dilated cardiomyopathy. Am Heart J. 1993;125(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  173. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331(23):1564–75.

    Article  CAS  PubMed  Google Scholar 

  174. Parodi O, De Maria R, Oltrona L, Testa R, Sambuceti G, Roghi A, et al. Myocardial blood flow distribution in patients with ischemic heart disease or dilated cardiomyopathy undergoing heart transplantation. Circulation. 1993;88(2):509–22.

    Article  CAS  PubMed  Google Scholar 

  175. Lehrke S, Lossnitzer D, Schob M, Steen H, Merten C, Kemmling H, et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart Br Card Soc. 2011;97(9):727–32.

    Article  Google Scholar 

  176. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation. 2002;105(2):186–93.

    Article  PubMed  Google Scholar 

  177. Koutalas E, Kanoupakis E, Vardas P. Sudden cardiac death in non-ischemic dilated cardiomyopathy: a critical appraisal of existing and potential risk stratification tools. Int J Cardiol. 2013;167(2):335–41.

    Article  PubMed  Google Scholar 

  178. Rigo F. The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J. 2006;27(11):1319–23.

    Article  PubMed  Google Scholar 

  179. Sharkey SW, Windenburg DC, Lesser JR, Maron MS, Hauser RG, Lesser JN, et al. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol. 2010;55(4):333–41.

    Article  PubMed  Google Scholar 

  180. Meimoun P, Malaquin D, Benali T, Boulanger J, Zemir H, Tribouilloy C. Transient impairment of coronary flow reserve in tako-tsubo cardiomyopathy is related to left ventricular systolic parameters. Eur J Echocardiogr J Work Group Echocardiogr Eur Soc Cardiol. 2009;10(2):265–70.

    Article  Google Scholar 

  181. Bybee KA, Prasad A, Barsness GW, Lerman A, Jaffe AS, Murphy JG, et al. Clinical characteristics and thrombolysis in myocardial infarction frame counts in women with transient left ventricular apical ballooning syndrome. Am J Cardiol. 2004;94(3):343–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

van der Hoeven, N.W., Mejía-Rentería, H., Hollander, M.R., van Royen, N., Escaned, J. (2017). Microcirculatory Dysfunction. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics