Skip to main content

FFR as a Clinical Tool and Its Applications in Specific Scenarios

  • Chapter
  • First Online:
Physiological Assessment of Coronary Stenoses and the Microcirculation

Abstract

Fractional flow reserve (FFR) is an invasive technique used to assess the hemodynamic impact of epicardial coronary artery stenosis, ultimately guiding revascularization. There is significant clinical evidence supporting FFR, but as with any technique, it has subtleties that are important to appreciate when deciding upon the treatment strategy for a given lesion. The background and methodology for measurement of FFR are described in other chapters in this book. In this chapter we will focus on the utility of FFR in situations frequently encountered in the catheterization laboratory and the main clinical evidence to support and guide its use.

In general, ischemia-directed revascularization based on FFR has demonstrated better outcomes in most clinical and angiographic settings. When compared to angiographically guided decisions, FFR frequently leads to a reduction in unnecessary procedures, and it appears to have a favorable economic profile. Notwithstanding its limitations, it has changed the face of clinical practice, allowing a comprehensive physiology-based evaluation, rather than the insufficient luminography-based precedent. It is expected that in the future, a greater proportion of patients will be treated based on functional assessment (with FFR or other techniques) which will likely lead to improved clinical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tobis J, Azarbal B, Slavin L. Assessment of intermediate severity coronary lesions in the catheterization laboratory. J Am Coll Cardiol. 2007;49(8):839–48.

    Article  PubMed  Google Scholar 

  2. Pijls NHJ, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis. 5-year follow-up of the DEFER study. J Am Coll Cardiol. 2007;49(21):2105–11.

    Article  PubMed  Google Scholar 

  3. Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-Year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol. Elsevier Inc. 2010;56(3):177–84.

    Google Scholar 

  4. De Bruyne B, Fearon WF, Pijls NHJ, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve–guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.

    Article  PubMed  Google Scholar 

  5. Fearon WF, Shilane D, Pijls NHJ, Boothroyd DB, Tonino PAL, Barbato E. Cost-effectiveness of percutaneous coronary intervention in patients with stable coronary artery disease and abnormal fractional flow reserve. Circulation. 2013;128(12):1335–40.

    Article  PubMed  Google Scholar 

  6. Johnson NP, Tóth GG, Lai D, Zhu H, Açar G, Agostoni P, et al. Prognostic value of fractional flow reserve linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64(16):1641–54.

    Google Scholar 

  7. Zhang D, Lv S, Song X, Yuan F, Xu F, Zhang M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention: a meta-analysis. Heart. 2015;101(6):455–62.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yanagisawa H, Chikamori T, Tanaka N, Usui Y, Takazawa K, Yamashina A. Application of pressure-derived myocardial fractional flow reserve in assessing the functional severity of coronary artery stenosis in patients with diabetes mellitus. Circ J. 2004;68(11):993–8.

    Article  PubMed  Google Scholar 

  9. Domínguez-Franco AJ, Jiménez-Navarro MF, Muñoz-García AJ, Alonso-Briales JH, Hernández-García JM, de Teresa Galván E. Long-term prognosis in diabetic patients in whom revascularization is deferred following fractional flow reserve assessment. Rev Esp Cardiol. 2008;61(4):352–9.

    Article  PubMed  Google Scholar 

  10. Reith S, Battermann S, Hellmich M, Marx N, Burgmaier M. Impact of type 2 diabetes mellitus and glucose control on fractional flow reserve measurements in intermediate grade coronary lesions. Clin Res Cardiol. 2014;103(3):191–201.

    Article  CAS  PubMed  Google Scholar 

  11. Sahinarslan A, Kocaman SA, Olgun H, Kunak T, Kiziltunç E, Ozdemir M, et al. The reliability of fractional flow reserve measurement in patients with diabetes mellitus. Coron Artery Dis. 2009;20(5):317–21.

    Article  PubMed  Google Scholar 

  12. Min JK, Shaw LJ, Devereux RB, Okin PM, Weinsaft JW, Russo DJ, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50(12):1161–70.

    Article  PubMed  Google Scholar 

  13. Cho I, Chang H-J, Sung JM, Pencina MJ, Lin FY, Dunning AM, et al. Coronary computed tomographic angiography and risk of all-cause mortality and nonfatal myocardial infarction in subjects without chest pain syndrome from the CONFIRM registry (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Mult. Circulation. 2012;126(3):304–13.

    Article  PubMed  Google Scholar 

  14. Boden W, O’Rourke R. Optimal medical therapy with or without PCI for stable coronary disease william. N Engl J Med. 2007;356(15):1503–16.

    Article  CAS  PubMed  Google Scholar 

  15. Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–15.

    Article  CAS  PubMed  Google Scholar 

  16. Shaw LJ, Berman DS, Maron DJ, Mancini GBJ, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91.

    Article  PubMed  Google Scholar 

  17. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, et al. Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991–1001.

    Article  PubMed  Google Scholar 

  18. Schwartz JG, Fearon WF. Functional assessment of multivessel coronary artery disease: ischemia-guided percutaneous coronary intervention. Coron Artery Dis. 2014;25(6):521–8.

    Article  PubMed  Google Scholar 

  19. Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) * Developed with the special contribution. Eur Heart J. 2014;35(37):2541–619.

    Article  PubMed  Google Scholar 

  20. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, Van Veer MT, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    Google Scholar 

  21. Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-Year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol. 2010;56(3):177–84.

    Article  PubMed  Google Scholar 

  22. Van Belle E, Rioufol G, Pouillot C, Cuisset T, Bougrini K, Teiger E, et al. Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography: Insights from a large french multicenter fractional flow reserve registry. Circulation. 2014;129(2):173–85.

    Article  PubMed  Google Scholar 

  23. Nam CW, Mangiacapra F, Entjes R, Chung IS, Sels JW, Tonino PAL, et al. Functional SYNTAX score for risk assessment in multivessel coronary artery disease. J Am Coll Cardiol. Elsevier Inc. 2011;58(12):1211–8.

    Google Scholar 

  24. Botman KJ, Pijls NHJ, Bech JW, Aarnoudse W, Peels K, Van Straten B, et al. Percutaneous coronary intervention or bypass surgery in multivessel disease? A tailored approach based on coronary pressure measurement. Catheter Cardiovasc Interv. 2004;63(2):184–91.

    Article  PubMed  Google Scholar 

  25. Toth GG, Toth B, Johnson NP, De Vroey F, Di Serafino L, Pyxaras S, et al. Revascularization decisions in patients with stable angina and intermediate lesions: results of the international survey on interventional strategy. Circ Cardiovasc Interv. 2014;7(6):751–9.

    Article  PubMed  Google Scholar 

  26. Fearon WF, Bornschein B, Tonino PAL, Gothe RM, De Bruyne B, Pijls NHJ, et al. Economic evaluation of fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. Circulation. 2010;122(24):2545–50.

    Article  PubMed  Google Scholar 

  27. Park S-J, Ahn J-M. Should we be using fractional flow reserve more routinely to select stable coronary patients for percutaneous coronary intervention? Curr Opin Cardiol. 2012;27(6):675–81.

    Article  PubMed  Google Scholar 

  28. Giannoglou GD, Antoniadis AP, Chatzizisis YS, Damvopoulou E, Parcharidis GE, Louridas GE. Prevalence of narrowing ≥50% of the left main coronary artery among 17,300 patients having coronary angiography. Am J Cardiol. 2006;98(9):1202–5.

    Article  PubMed  Google Scholar 

  29. Soleimani A, Abbasi A, Kazzazi EH, Hosseini K, Salirifar M, Darabian S, et al. Prevalence of left main coronary artery disease among patients with ischemic heart disease: insights from the Tehran Angiography Registry. Minerva Cardioangiol. 2009;57(2):175–83.

    CAS  PubMed  Google Scholar 

  30. Yusuf S, Zucker D, Peduzzi P, Fisher LD, Takaro T, Kennedy JW, et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet. 1994;344(8922):563–70.

    Article  CAS  PubMed  Google Scholar 

  31. Caracciolo EA, Davis KB, Sopko G, Kaiser GC, Corley SD, Schaff H, et al. Comparison of surgical and medical group survival in patients with left main equivalent coronary artery disease. Long-term CASS experience. Circulation. 1995;91(9):2335–44.

    Google Scholar 

  32. Dores H, Raposo L, Almeida MS, Brito J, Santos PG, Sousa PJ, et al. Percutaneous coronary intervention of unprotected left main disease: five-year outcome of a single-center registry. Rev Port Cardiol. 2013;32(12):997–1004.

    PubMed  Google Scholar 

  33. Kappetein AP, Feldman TE, Mack MJ, Morice M-C, Holmes DR, Ståhle E, et al. Comparison of coronary bypass surgery with drug-eluting stenting for the treatment of left main and/or three-vessel disease: 3-year follow-up of the SYNTAX trial. Eur Heart J. 2011;32(17):2125–34.

    Article  PubMed  Google Scholar 

  34. Ahn J-M, Roh J-H, Kim Y-H, Park D-W, Yun S-C, Lee PH, et al. Randomized trial of stents versus bypass surgery for left main coronary artery disease: five-year outcomes of the PRECOMBAT study. J Am Coll Cardiol. 2015;65(20):2198–206.

    Google Scholar 

  35. Park D-W, Seung KB, Kim Y-H, Lee J-Y, Kim W-J, Kang S-J, et al. Long-term safety and efficacy of stenting versus coronary artery bypass grafting for unprotected left main coronary artery disease 5-year results from the MAIN-COMPARE (Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Per. J Am Coll Cardiol. 2010;56(2):117–24.

    Article  PubMed  Google Scholar 

  36. Park H-B, Heo RÓ, Hartaigh B, Cho I, Gransar H, Nakazato R, et al. Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC Cardiovasc Imaging. 2015;8(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Isner JM, Kishel J, Kent KM, Ronan JA, Ross AM, Roberts WC. Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic–histologic correlative analysis in 28 patients. Circulation. 1981;63(5):1056–64.

    Article  CAS  PubMed  Google Scholar 

  38. Lindstaedt M, Spiecker M, Perings C, Lawo T, Yazar A, Holland-Letz T, et al. How good are experienced interventional cardiologists at predicting the functional significance of intermediate or equivocal left main coronary artery stenoses? Int J Cardiol. 2007;120(2):254–61.

    Article  PubMed  Google Scholar 

  39. Botman CJ, Schonberger J, Koolen S, Penn O, Botman H, Dib N, et al. Does stenosis severity of native vessels influence bypass graft patency? A prospective fractional flow reserve-guided study. Ann Thorac Surg. 2007;83(6):2093–7.

    Article  PubMed  Google Scholar 

  40. Bech GJ, Droste H, Pijls NH, De Bruyne B, Bonnier JJ, Michels HR, et al. Value of fractional flow reserve in making decisions about bypass surgery for equivocal left main coronary artery disease. Heart. 2001;86(5):547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lindstaedt M, Yazar A, Germing A, Fritz MK, Holland-Letz T, Mügge A, et al. Clinical outcome in patients with intermediate or equivocal left main coronary artery disease after deferral of surgical revascularization on the basis of fractional flow reserve measurements. Am Heart J. 2006;152(1):156.e1–9.

    Google Scholar 

  42. Courtis J, Rodés-Cabau J, Larose E, Potvin JM, Déry JP, De Larochellière R, et al. Usefulness of coronary fractional flow reserve measurements in guiding clinical decisions in intermediate or equivocal left main coronary stenoses. Am J Cardiol. 2009;103(7):943–9.

    Article  PubMed  Google Scholar 

  43. Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation. 2009;120(15):1505–12.

    Article  PubMed  Google Scholar 

  44. Mallidi J, Atreya AR, Cook J, Garb J, Jeremias A, Klein LW, et al. Long-term outcomes following fractional flow reserve-guided treatment of angiographically ambiguous left main coronary artery disease: a meta-analysis of prospective cohort studies. Catheter Cardiovasc Interv. 2015;86(1):12–8.

    Google Scholar 

  45. Daniels DV, Van’T Veer M, Pijls NHJ, Van Der Horst A, Yong AS, De Bruyne B, et al. The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease. JACC Cardiovasc Interv. 2012;5(10):1021–5.

    Article  PubMed  Google Scholar 

  46. Pijls NH, De Bruyne B, Bech GJ, Liistro F, Heyndrickx GR, Bonnier HJ, et al. Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation. 2000;102(19):2371–7.

    Article  CAS  PubMed  Google Scholar 

  47. Latib A, Colombo A. Bifurcation disease. What do we know, what should we do? JACC Cardiovasc Interv. 2008;1(3):218–26.

    Article  PubMed  Google Scholar 

  48. Park D-W, Kim Y-H, Yun S-C, Ahn J-M, Lee J-Y, Kim W-J, et al. Frequency, causes, predictors, and clinical significance of peri-procedural myocardial infarction following percutaneous coronary intervention. Eur Heart J. 2013;34(22):1662–9.

    Article  CAS  PubMed  Google Scholar 

  49. Van Werkum JW, Heestermans AA, Zomer AC, Kelder JC, Suttorp MJ, Rensing BJ, et al. Predictors of coronary stent thrombosis. The Dutch Stent Thrombosis Registry. J Am Coll Cardiol. American College of Cardiology Foundation. 2009;53(16):1399–409.

    Google Scholar 

  50. Park SH, Koo B-K. Clinical applications of fractional flow reserve in bifurcation lesions. J Geriatr Cardiol. 2012;9(3):278–84.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tu S, Pyxaras SA, Lam MK, Li Y. Fractional flow reserve and coronary bifurcation anatomy. JACC Cardiovasc Interv. 2015;8(4):564–74.

    Article  PubMed  Google Scholar 

  52. Stankovic G, Lefev̀re T, Chieffo A, Hildick-Smith D, Lassen JF, Pan M, et al. Consensus from the 7th European Bifurcation Club meeting. EuroIntervention. 2013;9(1):36–45.

    Article  PubMed  Google Scholar 

  53. Koh JS, Koo BK, Kim JH, Yang HM, Park KW, Kang HJ, et al. Relationship between fractional flow reserve and angiographic and intravascular ultrasound parameters in ostial lesions: major epicardial vessel versus side branch ostial lesions. JACC Cardiovasc Interv. 2012;5(4):409–15.

    Article  PubMed  Google Scholar 

  54. Ha J, Kim J-S, Mintz GS, Kim B-K, Shin D-H, Ko Y-G, et al. 3D OCT versus FFR for jailed side-branch ostial stenoses. JACC Cardiovasc Imaging. American College of Cardiology Foundation; 2014;7(2):204–5.

    Google Scholar 

  55. Johnson NP, Kirkeeide RL, Gould KL. Coronary anatomy to predict physiology fundamental limits. Circ Cardiovasc Imaging. 2013;6(5):817–32.

    Article  PubMed  Google Scholar 

  56. Behan MW, Holm NR, Curzen NP, Erglis A, Stables RH, De Belder AJ, et al. Simple or complex stenting for bifurcation coronary lesions: a patient-level pooled-analysis of the Nordic bifurcation study and the British bifurcation coronary study. Circ Cardiovasc Interv. 2011;4(1):57–64.

    Article  PubMed  Google Scholar 

  57. Bellenger NG, Swallow R, Wald DS, Court I, Calver AL, Dawkins KD, et al. Haemodynamic significance of ostial side branch nipping following percutaneous intervention at bifurcations: a pressure wire pilot study. Heart. 2007;93(2):249–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahn JM, Lee JY, Kang SJ, Kim YH, Song HG, Oh JH, et al. Functional assessment of jailed side branches in coronary bifurcation lesions using fractional flow reserve. JACC Cardiovasc Interv. 2012;5(2):155–61.

    Article  PubMed  Google Scholar 

  59. Koo BK, Kang HJ, Youn TJ, Chae IH, Choi DJ, Kim HS, et al. Physiologic assessment of jailed side branch lesions using fractional flow reserve. J Am Coll Cardiol. 2005;46(4):633–7.

    Article  PubMed  Google Scholar 

  60. Kumsars I, Narbute I, Thuesen L, Niemelä M, Steigen TK, Kervinen K, et al. Side branch fractional flow reserve measurements after main vessel stenting: a Nordic-Baltic Bifurcation study III substudy. EuroIntervention. 2012;7(10):1155–61.

    Article  PubMed  Google Scholar 

  61. Koo BK, Park KW, Kang HJ, Cho YS, Chung WY, Youn TJ, et al. Physiological evaluation of the provisional side-branch intervention strategy for bifurcation lesions using fractional flow reserve. Eur Heart J. 2008;29(6):726–32.

    Article  PubMed  Google Scholar 

  62. Chen S, Zhang J, Xu T, Liu Z, Ge Z, You W, et al. Randomized comparison of FFR-guided and angiography-guided provisional stenting of true coronary bifurcation lesions. 2015:1–12.

    Google Scholar 

  63. Strategy I, Clinical I. Fractional flow reserve for coronary. 2015:1–3.

    Google Scholar 

  64. De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation. 2000;101(15):1840–7.

    Article  PubMed  Google Scholar 

  65. Saito N, Matsuo H, Kawase Y, Watanabe S, Bao B, Yamamoto E, et al. In vitro assessment of mathematically-derived fractional flow reserve in coronary lesions with more than two sequential stenoses. J Invasive Cardiol. 2013;25(12):642–9.

    PubMed  Google Scholar 

  66. Seto AH, Tehrani DM, Bharmal MI, Kern MJ. Variations of coronary hemodynamic responses to intravenous adenosine infusion: implications for fractional flow reserve measurements. Catheter Cardiovasc Interv. 2014;84(3):416–25.

    Article  PubMed  Google Scholar 

  67. Echavarría-Pinto M, Gonzalo N, Ibañez B, Petraco R, Jimenez-Quevedo P, Sen S, et al. Low coronary microcirculatory resistance associated with profound hypotension during intravenous adenosine infusion implications for the functional assessment of coronary stenoses. Circ Cardiovasc Interv. 2014;7(1):35–42.

    Article  PubMed  Google Scholar 

  68. Tarkin JM, Nijjer S, Sen S, Petraco R, Echavarria-Pinto M, Asress KN, et al. Hemodynamic response to intravenous adenosine and its effect on fractional flow reserve assessment: results of the adenosine for the functional evaluation of coronary stenosis severity (AFFECTS) study. Circ Cardiovasc Interv. 2013;6(6):654–61.

    Article  CAS  PubMed  Google Scholar 

  69. Pijls NHJ, Klauss V, Siebert U, Powers E, Takazawa K, Fearon WF, et al. Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation. 2002;105(25):2950–4.

    Article  PubMed  Google Scholar 

  70. Jensen LO, Thayssen P, Thuesen L, Hansen HS, Lassen JF, Kelbaek H, et al. Influence of a pressure gradient distal to implanted bare-metal stent on in-stent restenosis after percutaneous coronary intervention. Circulation. 2007;116(24):2802–8.

    Article  PubMed  Google Scholar 

  71. Van’t Veer M, Pijls NHJ, Aarnoudse W, Koolen JJ, Van De Vosse FN. Evaluation of the haemodynamic characteristics of drug-eluting stents at implantation and at follow-up. Eur Heart J. 2006;27(15):1811–7.

    Article  Google Scholar 

  72. Klauss V, Erdin P, Rieber J, Leibig M, Stempfle H-U, König A, et al. Fractional flow reserve for the prediction of cardiac events after coronary stent implantation: results of a multivariate analysis. Heart. 2005;91(2):203–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bittencourt MS, Hulten E, Ghoshhajra B, O’Leary D, Christman MP, Montana P, et al. Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ Cardiovasc Imaging. 2014;7(2):282–91.

    Article  PubMed  Google Scholar 

  74. Mushtaq S, De Araujo GP, Garcia-Garcia HM, Pontone G, Bartorelli AL, Bertella E, et al. Long-term prognostic effect of coronary atherosclerotic burden: validation of the computed tomography-Leaman score. Circ Cardiovasc Imaging. 2015;8(2):e002332.

    Article  PubMed  Google Scholar 

  75. Lopez-Palop R, Pinar E, Lozano Í, Saura D, Picó F, Valdés M. Utility of the fractional flow reserve in the evaluation of angiographically moderate in-stent restenosis. Eur Heart J. 2004;25(22):2040–7.

    Article  PubMed  Google Scholar 

  76. Yamashita J, Tanaka N, Fujita H, Akasaka T, Takayama T, Oikawa Y, et al. Usefulness of functional assessment in the treatment of patients with moderate angiographic paclitaxel-eluting stent restenosis. Circ J. 2013;77(5):1180–5.

    Article  PubMed  Google Scholar 

  77. Wilson SJS, Hunter G, Okane P, Swallow R, Talwar S, Levy T. Fractional flow reserve assessment for in-stent restenosis: providing the courage to defer target lesion revascularisation in angiographic significant lesions. EuroIntervention. 2012;8(Suppl N):Abstract 228.

    Google Scholar 

  78. Krüger S, Koch KC, Kaumanns I, Merx MW, Schäfer WM, Buell U, et al. Use of fractional flow reserve versus stress perfusion scintigraphy in stent restenosis. Eur J Intern Med. 2005;16(6):429–31.

    Article  PubMed  Google Scholar 

  79. Toth G, De Bruyne B, Casselman F, De Vroey F, Pyxaras S, Di Serafino L, et al. Fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circulation. 2013;128(13):1405–11.

    Article  PubMed  Google Scholar 

  80. Aqel R, Zoghbi GJ, Hage F, Dell’Italia L, Iskandrian AE. Hemodynamic evaluation of coronary artery bypass graft lesions using fractional flow reserve. Catheter Cardiovasc Interv. 2008;72(4):479–85.

    Article  PubMed  Google Scholar 

  81. Rapp AH, Hillis LD, Lange RA, Cigarroa JE. Prevalence of coronary artery disease in patients with aortic stenosis with and without angina pectoris. Am J Cardiol. Elsevier. 2001;87(10):1216–7.

    Google Scholar 

  82. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circ. 2014;129(23):2440–92.

    Article  Google Scholar 

  83. Burgstahler C, Kunze M, Gawaz MP, Rasche V, Wöhrle J, Hombach V, et al. Adenosine stress first pass perfusion for the detection of coronary artery disease in patients with aortic stenosis: a feasibility study. Int J Cardiovasc Imaging. 2008;24(2):195–200.

    Article  PubMed  Google Scholar 

  84. Stähli BE, Maier W, Corti R, Lüscher TF, Altwegg LA. Fractional flow reserve evaluation in patients considered for transfemoral transcatheter aortic valve implantation: a case series. Cardiology. 2012;123(4):234–9.

    Article  PubMed  Google Scholar 

  85. Camuglia A, Poon K, Raffel O, Incani A, Savage M, Walters D. Fractional flow reserve assessment of epicardial coronary artery stenosis in the setting of severe degenerative valvular aortic stenosis. Lung and Circulation: Heart; 2012. p. S236–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Neves, D., Ramos, R., Raposo, L., Baptista, S., de Araújo Gonçalves, P. (2017). FFR as a Clinical Tool and Its Applications in Specific Scenarios. In: Escaned, J., Davies, J. (eds) Physiological Assessment of Coronary Stenoses and the Microcirculation. Springer, London. https://doi.org/10.1007/978-1-4471-5245-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5245-3_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5244-6

  • Online ISBN: 978-1-4471-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics