Skip to main content

Distributed Transducers by Using Smart Materials

  • Chapter
  • First Online:
Control of Noise and Structural Vibration

Abstract

In this chapter, we consider the design of piezoelectric sensors and actuators for structural vibration and sound control. Firstly, the robust stability analysis of the collocated sensor/actuator pair is discussed. Secondly, the design of modal sensors by using shaped PVDF films for beam-type structures is presented. Thirdly, the modal sensor by using a PVDF array is discussed. Finally, the design of 2-D modal sensor/actuator is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark RL, Saunders WR, Gibbs GP (1998) Adaptive structures: dynamics and control. Wiley, New York

    Google Scholar 

  2. Preumont A (2002) Vibration control of active structures: an introduction, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  3. Lee CK, Moon FC (1990) Modal sensors/actuator. ASME Trans J Appl Mech 57:434–441

    Article  Google Scholar 

  4. Marcellin BZ, Naghshineh K, Kamman JW (2001) Narrow band active control of sound radiated from a baffled beam using local volume displacement minimization. Appl Acoust 62:47–64

    Article  Google Scholar 

  5. Marcellin BZ, Kamman JW, Naghshineh K (2001) Theoretical development and experimental validation of local volume displacement sensors for a vibrating beam. ASME Trans J Vib Acoust 123:110–118

    Article  Google Scholar 

  6. Zahui M, Wendt R (2004) Development of local volume displacement sensors for vibrating plates. J Acoust Soc Am 116(4):2111–2117

    Article  Google Scholar 

  7. Preumont A, Francois A, Dubru A (1999) Piezoelectric array sensing for real-time, broad-band sound radiation measurement. ASME Trans J Vib Acoust 121:446–452

    Article  Google Scholar 

  8. Francois A, de Man P, Preumont A (2001) Piezoelectric array sensing of volume displacement: a hardware demonstration. J Sound Vib 244(3):395–405

    Article  Google Scholar 

  9. Berkhoff AP (2001) Piezoelectric sensor configuration for active structural acoustic control. J Sound Vib 246(1):175–183

    Article  Google Scholar 

  10. Mao Q, Xu B, Jiang Z, Gu J (2003) A piezoelectric array for sensing radiation modes. Appl Acoust 64:669–680

    Article  Google Scholar 

  11. Nelson PA, Yoon SH (2000) Estimation of acoustic source strength by inverse methods: Part 1, Conditioning of the inverse problem. J Sound Vib 233(4):643–668

    Article  Google Scholar 

  12. Yoon SH, Nelson PA (2000) Estimation of acoustic source strength by inverse methods: Part 2, Experimental investigation of methods for choosing regularization parameters. J Sound Vib 233(4):669–705

    Article  Google Scholar 

  13. Preumont A, Francois A, de Man P, Piefort V (2003) Spatial filters in structural control. J Sound Vib 265:61–79

    Article  MATH  Google Scholar 

  14. Iwamoto H, Tanaka N (2005) Adaptive feed-forward control of flexural waves propagating in a beam using smart sensors. Smart Mater Struct 14:1369–1376

    Article  Google Scholar 

  15. Iwamoto H, Tanaka N (2004). Active control of a flexible beam using wave filter constructed with distributed parameter sensors. In: ACTIVE04, Williamsburg, VA

    Google Scholar 

  16. Fuller CR, Elliott SJ, Nelson PA (1997) Active control of vibration. Academic, London

    Google Scholar 

  17. Rex J, Elliott SJ (1992) The QWSIS-a new sensor for structural radiation control. In: MOVIC: Proceedings of international conference on motion and vibration control, Yokohama, pp 339–343

    Google Scholar 

  18. Gardonio P, Lee Y-S, Elliott SJ, Debost S (2001) Analysis and measurement of a matched volume velocity sensor and uniform force actuator for active structural acoustic control. J Acoust Soc Am 110:3025–3031

    Article  Google Scholar 

  19. Henrioulle K, Sas P (2003) Experimental validation of a collocated PVDF volume velocity sensor/actuator pair. J Sound Vib 265:489–506

    Article  Google Scholar 

  20. Johnson ME, Elliott SJ (1995) Active control of sound radiation using volume velocity cancellation. J Acoust Soc Am 98(4):2174–2186

    Article  Google Scholar 

  21. Charette F, Berry A, Guigou C (1998) Active control of sound radiation from a plate using a polyvinylidene fluoride volume displacement sensor. J Acoust Soc Am 103(3):1493–1503

    Article  Google Scholar 

  22. Jian K, Friswell MI (2007) Distributed modal sensors for rectangular plate structures. J Intell Mater Syst Struct 18:939–948

    Article  Google Scholar 

  23. Pietrzko S, Batko W (2007) Neue Sensoren für die Messung der Abstrahlmoden als Element des aktiven Lärmminderungssystems. 33. Jahrestagung für Akustik (DAGA 2007), Stuttgart, Deutschland, März 19–22, pp 693–694

    Google Scholar 

  24. Pietrzko S, Mao Q (2007) Novel sensing systems for active control of sound radiation and transmission. In: 8th conference on active noise and vibration control methods, Krakow, Poland, June 11–14, pp 296–311

    Google Scholar 

  25. Pietrzko S, Mao Q (2006) Design of radiation mode sensors by means of piezoelectric fibers. In: ACTIVE 2006, sixth international symposium on active noise and vibration control, Adelaide, Australia, September 18–20, 8 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. P.4.1

    Consider a simply supported uniform beam with a collocated point force actuator and displacement sensor. The beam has an elastic modulus of 109 N/m2, a density of 2,700 kg/m3 and a thickness of 4 mm. The dimensions of the beam are 0.05 m × 0.6 m.

  1. (a)

    Calculate frequency response function (FRF) in frequency range 0–500 Hz when the collocated actuator/sensor pair is located at 0.1 m, 0.3 m and 0.4 m, respectively.

  2. (b)

    Draw the Pole/zero pattern and Nyquist diagram.

  1. P.4.2

    Consider a simply supported uniform beam covered with a PVDF patch as shown in Fig. 4.28. The beam’s physical parameters are the same as Problem 4.1. The mass and stiffness of the PVDF sensor is negligible.

  1. (a)

    If the beam is excited by a point force located at x a = 0.1 m, calculate the PVDF sensor charge output using Eq. (4.16).

  1. P.4.3

    Derive Eq. (4.38).

  1. P.4.4

    Calculate the shape of modal sensor for the third and fourth structural modes:

  1. (a)

    For a simply supported uniform beam

  2. (b)

    For a clamped–free uniform beam

  3. (c)

    For a clamped–clamped uniform beam

  1. P.4.5

    Consider the beam used in Problem 4.2. The beam is excited by a point force located at x a = 0.1 m.

  1. (a)

    Calculate the volume velocity for frequency below 1,000 Hz.

  2. (b)

    Why the even modes have no contribution to volume velocity?

  1. P.4.6

    Derive the shape function of the volume velocity PVDF sensor listed in Table 4.1 based on integration-by-parts approach.

  1. P.4.7

    Assume that there are n × n rectangular PVDF array with same size equally attached on a simply supported plate. To sense the first structural mode for the plate:

  1. (a)

    Calculate the weights of 8 × 4 PVDF array.

  2. (b)

    Calculate the weights of 8 × 8 PVDF array.

  3. (c)

    Calculate the weights of 16 × 8 PVDF array.

  4. (d)

    Calculate the weights of 20 × 10 PVDF array.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mao, Q., Pietrzko, S. (2013). Distributed Transducers by Using Smart Materials. In: Control of Noise and Structural Vibration. Springer, London. https://doi.org/10.1007/978-1-4471-5091-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5091-6_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5090-9

  • Online ISBN: 978-1-4471-5091-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics