Skip to main content

Introduction

  • Chapter
  • First Online:
Control of Noise and Structural Vibration

Abstract

The presence of structure-borne sound is a persistent problem in acoustics. Various noise control techniques, such as passive, active, or a combination of the two control techniques (hybrid), have been developed in different fields to reduce the noise. Among those techniques, the traditional passive noise reduction techniques are widely used in industries and commercial products. Passive control methods typically use absorptive materials or vibration absorbers to achieve noise reduction. They are proved to be very effective in the middle and high frequency ranges. However, in the low frequency range, passive noise control often makes noise elimination equipment very bulky and inefficient. For example, absorptive materials are not a practical means of attenuation at low frequencies because of the thickness requirement to absorb the large acoustic wavelengths. Similarly, damping materials typically are not effective in attenuating low-frequency vibrations and radiating sound. Thick and massive viscous materials are required, which again presents a practicality problem with implementing this traditional control technique to realistic applications. Efficient vibration and noise reduction approach in the low frequency range thus poses a challenging topic to noise control engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson PA, Elliott SJ (1992) Active control of sound. Academic, London

    Google Scholar 

  2. Fuller CR, Elliott SJ, Nelson PA (1997) Active control of vibration. Academic, London

    Google Scholar 

  3. Clark RL, Saunders WR, Gibbs GP (1998) Adaptive structures: dynamics and control. Wiley, New York

    Google Scholar 

  4. Hansen CH, Snyder SD (1997) Active control of noise and vibration. E&FN SPON, London

    Google Scholar 

  5. Preumont A (2002) Vibration control of active structures: an introduction, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  6. Lueg P (1936) Process of silencing sound oscillations. US Patent No. 2043416

    Google Scholar 

  7. Olson HF, May EG (1953) Electronic sound absorber. J Acoust Soc Am 25:1130–1136

    Article  Google Scholar 

  8. Fuller CR (1990) Active control of sound transmission/radiation from elastic plates by vibrational inputs. I. Analysis J Sound Vib 136(1):1–15

    Article  Google Scholar 

  9. Fuller CR, Hansen CH, Snyder SD (1991) Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs: an experimental comparison. J Sound Vib 145(2):195–215

    Article  Google Scholar 

  10. Wallace CE (1972) Radiation resistance of a rectangular panel. J Acoust Soc Am 51(3): 946–952

    Article  Google Scholar 

  11. Fahy F (1985) Sound and structural vibration/radiation, transmission and response. Academic, London

    Google Scholar 

  12. Qiu XJ, Sha JZ, Yang J (1995) Mechanisms of active control of noise transmission through a panel into a cavity using a point force actuator on the panel. J Sound Vib 182(1):167–170

    Article  Google Scholar 

  13. Borgiotti GV (1990) The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements. J Acoust Soc Am 88(4):1884–1893

    Article  Google Scholar 

  14. Photiais DM (1990) The relationships of singular value decomposition to wave-vector by three-dimensional structures. J Acoust Soc Am 88(4):1152–1159

    Article  Google Scholar 

  15. Elliott SJ, Johnson ME (1993) Radiation modes and the active control of sound power. J Acoust Soc Am 94(4):2194–2204

    Article  Google Scholar 

  16. Cunfare KA (1994) On the exterior acoustic radiation modes of structure. J Acoust Soc Am 96(4):2302–2312

    Article  Google Scholar 

  17. Naghshineh K, Koopmann GH (1994) An active control strategy for achieving weak radiator structures. ASME Trans J Vib Acoust 116:31–37

    Article  Google Scholar 

  18. Naghshineh K, Koopmann GH (1993) Active control of sound power using acoustic basis functions as surface velocity filters. J Acoust Soc Am 93(5):2740–2752

    Article  Google Scholar 

  19. Naghshineh K, Koopmann GH (1992) A design method for achieving weak radiator structures using active vibration control. J Acoust Soc Am 92(2):856–871

    Article  Google Scholar 

  20. Johnson ME, Elliott SJ (1995) Active control of sound radiation using volume velocity cancellation. J Acoust Soc Am 98(4):2174–2186

    Article  Google Scholar 

  21. Lee CK, Moon FC (1990) Modal sensors/actuator. ASME Trans J Appl Mech 57:434–441

    Article  Google Scholar 

  22. Guigou C, Berry A, Charette E, Nicolas F (1996) Active control of finite beam volume velocity using shaped PVDF sensors. Acta Acust United Acust 82(5):772–783

    MATH  Google Scholar 

  23. Snyder SD, Tanaka N, Kikushima Y (1995) The use of optimally shaped piezo-electric film sensors in the active control of free field structural radiation, Part 1: Feedforward control. ASME Trans J Vib Acoust 117:311–322

    Article  Google Scholar 

  24. Cazzolato BS, Hansen CH (1999) Structural radiation mode sensing for active control of sound radiation into enclosed spaces. J Acoust Soc Am 106(6):3732–3735

    Article  Google Scholar 

  25. Marcellin BZ, Naghshineh K, Kamman JW (2001) Narrow band active control of sound radiated from a baffled beam using local volume displacement minimization. Appl Acoust 62:47–64

    Article  Google Scholar 

  26. Marcellin BZ, Kamman JW, Naghshineh K (2001) Theoretical development and experimental validation of local volume displacement sensors for a vibrating beam. ASME Trans J Vib Acoust 123:110–118

    Article  Google Scholar 

  27. Zahui M, Wendt R (2004) Development of local volume displacement sensors for vibrating plates. J Acoust Soc Am 116(4):2111–2117

    Article  Google Scholar 

  28. Randall R, Brian Z, Koorosh N, Marcellin Z (2004) Development of a PVDF sensor for the measurement of the acoustic local volume displacement of vibrating beams. ASME Trans J Vib Acoust 126:352–358

    Article  Google Scholar 

  29. Charette F, Berry A, Guigou C (1998) Active control of sound radiation from a plate using a polyvinylidence fluoride volume displacement sensor. J Acoust Soc Am 103(3):1493–1503

    Article  Google Scholar 

  30. Preumont A, Francois A, Dubru S (1999) Piezoelectric array sensing for real-time, broad-band sound radiation measurement. J Vib Acoust 121:446–452

    Article  Google Scholar 

  31. Francois A, de Man P, Preumont A (2001) Piezoelectric array sensing of volume displacement: a hardware demonstration. J Sound Vib 244(3):395–405

    Article  Google Scholar 

  32. Berkhoff AP (2001) Piezoelectric sensor configuration for active structural acoustic control. J Sound Vib 246(1):175–183

    Article  Google Scholar 

  33. Mao Q, Xu B, Jiang Z, Gu J (2003) A piezoelectric array for sensing radiation modes. Appl Acoust 64:669–680

    Article  Google Scholar 

  34. Gibbs GP, Clark RL, Cox DE (2000) Radiation modal expansion: application to active structural acoustic control. J Acoust Soc Am 107(1):332–339

    Article  Google Scholar 

  35. Gardonio P, Lee YS, Elliott SJ (2001) Analysis and measurement of a matched volume velocity sensor and uniform force actuator for active structural acoustic control. J Acoust Soc Am 110(6):3025–3031

    Article  Google Scholar 

  36. Henrioulle H, Sas P (2003) Experimental validation of a collocated PVDF volume velocity sensor/actuator pair. J Sound Vib 265:489–506

    Article  Google Scholar 

  37. Crawley EF, Luis J (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25(10):1373–1385

    Article  Google Scholar 

  38. Hagood NW, Chung WH, Flotow A (1990) Modelling of piezoelectric actuator dynamics for active structural control. J Intell Mater Syst Struct 1(3):327–354

    Article  Google Scholar 

  39. Dosch JJ, Inman DJ, Garcia E (1992) A self-sensing piezoelectric actuator for collocated control. J Intell Mater Syst Struct 3:166–185

    Article  Google Scholar 

  40. Elliott SJ (2005) Distributed control of sound and vibration. Noise Control Eng J 53(5): 165–180

    Article  Google Scholar 

  41. Fahy FJ, Schofield C (1980) A note on the interaction between a Helmholtz resonator and an acoustic mode of an enclosure. J Sound Vib 72:365–378

    Article  MATH  Google Scholar 

  42. Esteve SJ, Johnson ME (2002) Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators. J Acoust Soc Am 112: 2840–2848

    Article  Google Scholar 

  43. Mao Q, Pietrzko S (2005) Control of sound transmission through double wall partitions using optimally tuned Helmholtz resonators. Acta Acust United Acust 91:723–731

    Google Scholar 

  44. Bedout JM, Franchek MA, Bernard RJ, Mongeau L (1997) Adaptive-passive noise control with self-tuning resonators. J Sound Vib 202:109–123

    Article  Google Scholar 

  45. Esteve SJ, Johnson ME (2004). Development of an adaptive Helmholtz resonator for broadband noise control. In: Proceedings of IMECE2004, Anaheim, CA, USA

    Google Scholar 

  46. Nagaya K, Hano Y, Suda A (2001) Silencer consisting of two-stage Helmholtz resonator with auto-tuning control. J Acoust Soc Am 110:289–295

    Article  Google Scholar 

  47. Esteve SJ, Johnson ME (2005) Adaptive Helmholtz resonators and passive vibration absorbers for cylinder interior noise control. J Sound Vib 288:1105–1130

    Article  Google Scholar 

  48. Hagood NW, Flotow A (1991) Damping of structural vibration with piezoelectric materials and passive electrical networks. J Sound Vib 146:243–268

    Article  Google Scholar 

  49. Niederberger D, Fleming A, Moheimani SOR, Morari M (2004) Adaptive multi-mode resonant piezoelectric shunt damping. Smart Mater Struct 13:1025–1035

    Article  Google Scholar 

  50. Niederberger D, Morari M, Pietrzko S (2003) Adaptive resonant shunted piezoelectric devices for vibration suppression. Proc SPIE Smart Struct Mater Conf 5056:213–223

    Google Scholar 

  51. Niederberger D, Pietrzko S, Morari M (2004) Noise control in a duct with online-tuned shunted piezoelectric materials. Proc SPIE Smart Struct Mater Conf 5386:405–413

    Google Scholar 

  52. Fleming AJ, Moheimani SOR (2003) Adaptive piezoelectric shunt damping. Smart Mater Struct 12:36–48

    Article  Google Scholar 

  53. Clark WW (2000) Vibration control with state-switching piezoelectric materials. J Intell Mater Syst Struct 11:263–271

    Google Scholar 

  54. Lawrence RC, Clark WW (2002) Comparison of low-frequency piezoelectric switching shunt techniques for structures damping. Smart Mater Struct 11:370–376

    Article  Google Scholar 

  55. Lawrence RC, Clark WW (2003) A novel semi-active multi-modal vibration control law for a piezoceramic actuator. ASME Trans J Vib Acoust 125:214–222

    Article  Google Scholar 

  56. Gawronski WK (2004) Advanced structural dynamics and active control of structures. Springer, New York

    Book  Google Scholar 

  57. Pietrzko S (2010) Contributions to noise and vibration control technology. AGH/ITEE, Krakw/Radom, ISBN: 978-83-7204-786-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. P.1.1

    Consider the three-mass–spring system shown in Fig. 1.1. If m 1 = 2 m 2 = m 3, k 1 = k 2 = k 3 = k 4 = 2 k 5 = 2 k 6, calculate the natural frequencies for this system.

  2. P.1.2

    What is difference between active noise control (ANC) and active structural–acoustic control (ASAC)?

  3. P.1.3

    What is the difference between feedforward and feedback controller? And when it is to be used?

  4. P.1.4

    Assuming a rectangular thin plate with length L x , width L y , and thickness h, the velocity distribution of the plate is v(x, y), what is the volume velocity of this structure?

  5. P.1.5

    Write a MATLAB function d = dsc(c) that takes a one-dimensional array of numbers c and returns an array d consisting of all numbers in the array c with all neighboring duplicated numbers being removed. For instance, if c = [0 4 5 5 1 1], then d = [0 4 5 1].

  6. P.1.6

    Plot the graph of a sphere of radius r with center at (a, b, c) based on MATLAB function sphere.

  7. P.1.7

    Write a MATLAB GUI program to display the graph in Problem 1.6. An example of interface of the GUI program is shown in Fig. 1.15.

    Fig. 1.15
    figure 000115

    An example of interface for Problem 1.7

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mao, Q., Pietrzko, S. (2013). Introduction. In: Control of Noise and Structural Vibration. Springer, London. https://doi.org/10.1007/978-1-4471-5091-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5091-6_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5090-9

  • Online ISBN: 978-1-4471-5091-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics