Skip to main content

Adaptation to Intermittent Hypoxia/Hyperoxia Enhances Efficiency of Exercise Training

  • Chapter
  • First Online:
Book cover Intermittent Hypoxia and Human Diseases

Abstract

This chapter provides an overview of the current concepts on redox signaling pathways, particularly, under hypoxic conditions. The principle of intermittent adaptation effects of variable oxygen levels (short-term hypoxia and hyperoxia) was substantiated and confirmed experimentally in vivo for the first time. The goal of our experiments in rats was to estimate (1) efficiency of physical training conducted separately and in combination with adaptation to intermittent hypoxia/hyperoxia, (2) changes in the rates of free radical processes, and (3) concentration of heat shock proteins (HSP). We found that short-term physical training increased the duration of swimming in acute exhaustive exercise. Combination of physical training with adaptation to hypoxia–normoxia had no effect on this parameter, while adaptation to physical load combined with adaptation to hypoxia–hyperoxia increased the duration of the active swimming phase and, as a consequence, the efficiency of adaptation. Adaptation to physical load and its combination with adaptation to variable oxygen levels increased the resistance of membrane structures to free radical oxidation at the expense of excessive activation of antioxidant defense enzymes in the course of physical training, which was partly compensated for by adaptation to hypoxia/normoxia and was fully prevented by adaptation to hypoxia/hyperoxia. Combination of two forms of adaptation to physical load and to variable oxygen levels markedly compensated/reversed the elevated content of HSP in the course of physical training, which is especially well pronounced during adaptation to hypoxia/hyperoxia. The novel technique is biologically less expensive and more beneficial for the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEE:

Acute exhaustive exercise

AP-1:

Activator protein 1

ClO :

Hypochlorite

H2O2 :

Hydrogen peroxide

H/H:

Hypoxia/hyperoxia

H/N:

Hypoxia/normoxia

HIF:

Hypoxia-inducible factor

HO 2 :

Hydroperoxyl radical

HSP:

Heat shock protein

IH:

Intermittent hypoxia

IRP:

Iron-regulatory protein

LOO :

Peroxy radicals

LOOH:

Lipid hydroperoxides

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

O −•2 :

Superoxide anion radical

OH :

Hydroxyl radical

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  1. Das DK. Redox regulation of cardiomyocyte survival and death. Antioxid Redox Signal. 2001;3:23–37.

    Article  PubMed  CAS  Google Scholar 

  2. Ungemach FR. Plasma membrane damage of hepatocytes following lipid peroxidation: involvement of phospholipase A2. In: Free radicals liver injury. Washington, D.C.: Oxford; 1985. p. 127–34. Proc. Int. Meet., Turin.

    Google Scholar 

  3. Sazontova TG. Stress-induced moderation of heart Ca-transporting system SR function and its resistance to endogenous damaging factors. Bull Exp Biol Med. 1989;108:271–4 [In Russian].

    Article  CAS  Google Scholar 

  4. Zolotarjova N, Ho C, Mellgren RL, et al. Different sensitivities of native and oxidized forms of Na+/K+-ATPase to intracellular proteinases. Biochim Biophys Acta. 1994;1192:125–31.

    Article  PubMed  CAS  Google Scholar 

  5. Hemler ME, Cook HW, Lands WE. Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch Biochem Biophys. 1979;193:340–5.

    Article  PubMed  CAS  Google Scholar 

  6. Roberts AM, Messina EJ, Kaley G. Prostacyclin (PGI2) mediates hypoxic relaxation of bovine coronary artery strips. Prostaglandins. 1981;21:555–69.

    Article  PubMed  CAS  Google Scholar 

  7. Semenza GL. Perspectives on oxygen sensing. Cell. 1999;98:281–4.

    Article  PubMed  CAS  Google Scholar 

  8. Chandel NS, Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol. 2000;88:1880–9.

    Article  PubMed  CAS  Google Scholar 

  9. Flohe L, Brigelius-Flohe R, Salion C, et al. Redox regulation of NF-kappa B activation. Free Radic Biol Med. 1997;22:1115–26.

    Article  PubMed  CAS  Google Scholar 

  10. Maulik N, Yoshida T, Das DK. Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem. 1999;196:13–21.

    Article  PubMed  CAS  Google Scholar 

  11. Graven KK, Zimmerman LH, Dickson EW, et al. Endothelial cell hypoxia associated proteins are cell and stress specific. J Cell Physiol. 1993;157:544–54.

    Article  PubMed  CAS  Google Scholar 

  12. Peng J, Jones GL, Watson K. Stress proteins as biomarkers of oxidative stress: effects of antioxidant supplements. Free Radic Biol Med. 2000;28:1598–606.

    Article  PubMed  CAS  Google Scholar 

  13. Ryter SW, Tyrrell RM. The heme synthesis and degradation pathway: role in oxidant sensitivity. Free Radic Biol Med. 2000;28:289–309.

    Article  PubMed  CAS  Google Scholar 

  14. Zhukova AG, Sazontova TG. Heme oxygenase: function, regulation, biological role. Hypoxia Med J. 2004;3–4:30–43.

    Google Scholar 

  15. Hu ML, Frankel EN, Leibowitz BE, et al. Effect of dietary lipids and vitamin E on in vitro lipid peroxidation in rat liver and kidney homogenates. J Nutr. 1989;119:1574–82.

    PubMed  CAS  Google Scholar 

  16. Sanz MJ, Ferrndiz ML, Cejudo M, et al. Influence of a series of natural flavonoids on free radical generating systems and oxidative stress. Xenobiotica. 1994;24:689–99.

    Article  PubMed  CAS  Google Scholar 

  17. Singh B, Sharma SP, Goyal R. Evaluation of Geriforte, an herbal geriatric tonic, on antioxidant defense system in Wistar rats. Ann N Y Acad Sci. 1994;717:170–3.

    Article  PubMed  CAS  Google Scholar 

  18. Cai YN, Appelkvist EL, Deplerre JW. Hepatic oxidative stress and related defenses during treatment of mice with acetylsalicylic acid and other peroxisome proliferators. J Biochem Toxicol. 1995;10:87–94.

    Article  PubMed  CAS  Google Scholar 

  19. Arkhipenko YuV, Sazontova TG, Rice-Evans C. Hypertrophy and regression of rat heart: free radical related metabolic systems. Pathophysiology. 1997;4:241–8.

    Article  Google Scholar 

  20. Kolchinskaya AZ. Intermittent hypoxic training in sports of highest achievements. Sports Med. 2008;1:9–25 [In Russian].

    Google Scholar 

  21. Sazontova TG, Tkatchouk EN, Kolmykova SN, et al. Comparative analysis of peroxidation and antioxidant enzyme activities in rats adapted to different regimes of normobaric hypoxia. Hypoxia Med J. 1994;2:4–7.

    Google Scholar 

  22. Sazontova TG, Arkhipenko YuV. The role of free-radical processes in adaptation of the organism to variable oxygen levels. In: Lukyanova LD, Ushakov IB, editors. Problems of hypoxia: molecular, physiological and medical aspects. Moscow: Publ. Istoki; 2004. p. 112–38 [In Russian].

    Google Scholar 

  23. Sazontova TG, Arkhipenko YuV. Intermittent hypoxia in resistance of cardiac membrane structures: role of reactive oxygen species and redox signaling. In: Xi L, Serebrovskaya TV, editors. Intermittent hypoxia: from molecular mechanisms to clinical applications. New York: Nova Science Publishers, Inc.; 2009. p. 147–87.

    Google Scholar 

  24. Zenkov NK, Lankin VZ, Menschikova EB. Oxidative stress. Moscow: MAIK Science/Interperiodica; 2001 [in Russian].

    Google Scholar 

  25. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1991;43:109–40.

    PubMed  CAS  Google Scholar 

  26. Thomas S, Lowe JE, Hadjivassiliou V, et al. Use of the comet assay to investigate the role of superoxide in glutathione-induced DNA damage. Biochem Biophys Res Commun. 1998;243:241–5.

    Article  PubMed  CAS  Google Scholar 

  27. Skulachev VP. Mitochondrial in the programmed death phenomena; a principle of biology: “It’s better to die than to be wrong”. IUBMB Life. 2000;49:365–77.

    Article  PubMed  CAS  Google Scholar 

  28. Sohal RS, Svensson I, Brunk UT. Hydrogen peroxide production by liver mitochondria in different species. Mech Ageing Dev. 1990;53:209–15.

    Article  PubMed  CAS  Google Scholar 

  29. Beyer RE. The analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol. 1992;70:390–403.

    Article  PubMed  CAS  Google Scholar 

  30. Zorov DB. Mechanisms of cardioprotection in hypoxia/reoxygenation. In: Reception and intracellular signaling. Puschino: Nauka; 2003. p. 160–2 [in Russian].

    Google Scholar 

  31. Sohal RS. Ageing, cytochrome oxidase activity, and hydrogen peroxide release by mitochondria. Free Radic Biol Med. 1993;14:583–8.

    Article  PubMed  CAS  Google Scholar 

  32. Richter C. Role of mitochondrial DNA modifications in degenerative diseases and aging. Curr Top Bioenerg. 1994;17:1–19.

    CAS  Google Scholar 

  33. Nikonorov AA, Tverdokhlib VP, Krasikov SI. Correction of biotransformation of xenobiotics in extreme states. In: Biochemistry: from molecular mechanisms investigation to implementation in clinical practice. Orenburg: OGMA; 2003. p. 305–11 [in Russian].

    Google Scholar 

  34. Deev LI, Ahalaya MYa, Illarionova EA, et al. Relation of changes in the content and activity of rat liver microsomal cytochrome P-450 to the intensification of lipid peroxidation under stress. Biull Eksp Biol Med. 1983;95:51–3 [In Russian].

    Article  PubMed  CAS  Google Scholar 

  35. Nikonorov AA. Application of adaptation to interval hypobaric hypoxia for increase of sportsmen’ organism resistance to competition load. Thesis for MD. Siberian State Medical University, Tomsk; 2002 [In Russian].

    Google Scholar 

  36. Bondy SC, Naderi S. Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochem Pharmacol. 1994;48:155–9.

    Article  PubMed  CAS  Google Scholar 

  37. Podmore I, Griffiths H, Herbert K. Vitamin C exhibits pro-oxidant properties. Nature. 1998;392:559.

    Article  PubMed  CAS  Google Scholar 

  38. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    PubMed  CAS  Google Scholar 

  39. Saenko YuV, Shutov AM. Role of oxidative stress in pathology of cardiovascular system in nephrologic patients. II. Clinical aspects of oxidative stress. Nephrol Dial. 2004;6:138–44.

    Google Scholar 

  40. Dubinina EE. Role of reactive oxygen species as signal molecules in tissue metabolism under oxidative stress. Vopr Med Khim. 2001;47:561–81 [In Russian].

    PubMed  CAS  Google Scholar 

  41. Sergienko VI, Panasenko OM. Reactive oxygen species in disease pathogenesis. Technol Living Syst. 2004;1:37–46 [In Russian].

    CAS  Google Scholar 

  42. Moldovan NI, Moldovan L. Oxygen free radicals and redox biology of organelles. Histochem Cell Biol. 2004;122:395–412.

    Article  PubMed  CAS  Google Scholar 

  43. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  PubMed  CAS  Google Scholar 

  44. Sies H. Oxidative stress – from basic research to clinical application. Am J Med. 1991;91:S31–8.

    Article  Google Scholar 

  45. Fridovich I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci. 1999;893:13–8.

    Article  PubMed  CAS  Google Scholar 

  46. Zakharova MN, Zavalishin IA, Boldyrev AA. Role of SOD in pathogenesis of amyotrophic lateral sclerosis. Bull Exp Biol Med. 1999;127:460–2 [In Russian].

    Article  CAS  Google Scholar 

  47. Wanders RJA, Denis S. Identification of superoxide dismutase in rat liver peroxisomes. Biochem Biophys Acta. 1992;1115:259–62.

    Article  PubMed  CAS  Google Scholar 

  48. Akashi M, Hachiya M, Paquette RL. Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts – possible mechanisms for its accumulation. J Biol Chem. 1995;270:15864–9.

    Article  PubMed  CAS  Google Scholar 

  49. Radi R, Turrens JF, Chang LY. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991;266:22028–34.

    PubMed  CAS  Google Scholar 

  50. Eriksson AM, Lundgren B, Andersson K, et al. Is the cytosolic catalase induced by peroxisome proliferators in mouse liver on its way to the peroxisomes? FEBS Lett. 1992;308:211–4.

    Article  PubMed  CAS  Google Scholar 

  51. Antunes F, Han D, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radic Biol Med. 2002;33:1260–7.

    Article  PubMed  CAS  Google Scholar 

  52. Finaud J, Lac G, Filaire E. Oxidative stress: relationship with exercise and training. Sports Med. 2006;36:327–58.

    Article  PubMed  Google Scholar 

  53. Khotochkina LV, Statsenko NI. Intermittent hypoxic training as a method of physical state improvement and increase of efficiency in highly qualified oarsmen. Hypoxia Med J. 1993;2:38–40 [In Russian].

    Google Scholar 

  54. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  PubMed  CAS  Google Scholar 

  55. Kikugawa K, Kojima T, Yamaki S, et al. Interpretation of the thiobarbituric acid reactivity of rat liver and brain homogenates in the presence of ferric ion and ethylenediaminetetraacetic acid. Anal Biochem. 1992;202:249–55.

    Article  PubMed  CAS  Google Scholar 

  56. Luck H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. New York: Verlag-Chemie, Academic; 1963. p. 885–8.

    Google Scholar 

  57. Beauchamp C, Fridovich I. Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276–87.

    Article  PubMed  CAS  Google Scholar 

  58. Andreeva LI, Goranchuk VV, Shustov EB, et al. Human adaptation to hypothermia and changes in leucocytes of peripheral blood. Sechenov Ross Physiol J. 2001;87:1208–16 [In Russian].

    CAS  Google Scholar 

  59. Boykova AA, Andreeva LI, Margulis BA, et al. Constitutive isoform of heat shock protein 70 in human blood mononuclears as marker of adaptation during normobaric hypoxia training. Sechenov Ross Physiol J. 2006;92:835–42 [In Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Sazontova, T.G., Bolotova, A.V., Bedareva, I.V., Kostina, N.V., Arkhipenko, Y.V. (2012). Adaptation to Intermittent Hypoxia/Hyperoxia Enhances Efficiency of Exercise Training. In: Xi, L., Serebrovskaya, T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2906-6_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2905-9

  • Online ISBN: 978-1-4471-2906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics