Skip to main content

Epigenetic Changes During Cell Transformation

  • Chapter
  • First Online:
Epigenetic Alterations in Oncogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((volume 754))

Abstract

Malignant cancer emerges from normal healthy cells in a multistep ­process that involves both genetic and epigenetic lesions. Both genetic and environmental inputs participate in driving the epigenetic changes that occur during human carcinogenesis. The pathologic changes seen in DNA methylation and histone posttranslational modifications are complex, deeply intertwined, and act in concert to produce malignant transformation. To better understand the causes and consequences of the pathoepigenetic changes in cancer formation, a variety of experimentally tractable human cell line model systems that accurately reflect the molecular alterations seen in the clinical disease have been developed. Results from studies using these cell line model systems suggest that early critical epigenetic events occur in a stepwise fashion prior to cell immortalization. These epigenetic steps coincide with the cell’s transition through well-defined cell proliferation barriers of stasis and telomere dysfunction. Following cell immortalization, stressors, such as environmental toxicants, can induce malignant transformation in a process in which the epigenetic changes occur in a smoother progressive fashion, in contrast to the stark stepwise epigenetic changes seen prior to cell immortalization. It is hoped that developing a clearer understanding of the identity, timing, and consequences of these epigenetic lesions will prove useful in future clinical applications that range from early disease detection to therapeutic intervention in malignant cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark SJ et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22(15):2990–2997

    Article  PubMed  CAS  Google Scholar 

  2. Frommer M et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89(5):1827–1831

    Article  PubMed  CAS  Google Scholar 

  3. Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    Article  PubMed  CAS  Google Scholar 

  4. Maunakea AK et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257

    Article  PubMed  CAS  Google Scholar 

  5. Drew Y et al (2011) Therapeutic potential of poly(ADP-ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst 103(4):334–346

    Article  PubMed  CAS  Google Scholar 

  6. Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  PubMed  CAS  Google Scholar 

  7. Lorenzi PL et al (2009) DNA fingerprinting of the NCI-60 cell line panel. Mol Cancer Ther 8(4):713–724

    Article  PubMed  CAS  Google Scholar 

  8. Nims RW et al (2010) Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification. In Vitro Cell Dev Biol Anim 46(10):811–819

    Article  PubMed  Google Scholar 

  9. Hammond SL, Ham RG, Stampfer MR (1984) Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci USA 81(17):5435–5439

    Article  PubMed  CAS  Google Scholar 

  10. Amstad P et al (1988) Neoplastic transformation of a human bronchial epithelial cell line by a recombinant retrovirus encoding viral Harvey ras. Mol Carcinog 1(3):151–160

    Article  PubMed  CAS  Google Scholar 

  11. Boukamp P et al (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106(3):761–771

    Article  PubMed  CAS  Google Scholar 

  12. Ke Y et al (1988) Human bronchial epithelial cells with integrated SV40 virus T antigen genes retain the ability to undergo squamous differentiation. Differentiation; research in biological diversity 38(1):60–66

    Article  PubMed  CAS  Google Scholar 

  13. Miller FR et al (1993) Xenograft model of progressive human proliferative breast disease. J Natl Cancer Inst 85(21):1725–1732

    Article  PubMed  CAS  Google Scholar 

  14. Petzoldt JL et al (1995) Immortalisation of human urothelial cells. Urol Res 23(6):377–380

    Article  PubMed  CAS  Google Scholar 

  15. Bello D et al (1997) Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18(6):1215–1223

    Article  PubMed  CAS  Google Scholar 

  16. Kiyono T et al (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396(6706):84–88

    Article  PubMed  CAS  Google Scholar 

  17. Dickson MA et al (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20(4):1436–1447

    Article  PubMed  CAS  Google Scholar 

  18. Chapman E et al (2006) Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway. Oncogene 25(36):5037–5045

    Article  PubMed  CAS  Google Scholar 

  19. Chang CJ et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13(3):317–323

    Article  PubMed  CAS  Google Scholar 

  20. Junk DJ et al (2008) Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia 10(5):450–461

    PubMed  CAS  Google Scholar 

  21. Vrba L et al (2008) p53 induces distinct epigenetic states at its direct target promoters. BMC Genomics 9:486

    Article  PubMed  Google Scholar 

  22. Vahidnia A, van der Voet G, de Wolff F (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 10:823–832

    Article  Google Scholar 

  23. Rohe G (1896) Arsenic. In: Foster F (ed) Reference-book of practical therapeutics. D. Appleton, New York, p 142

    Google Scholar 

  24. Emadi A, Gore SD (2010) Arsenic trioxide—an old drug rediscovered. Blood Rev 24(4–5):191–199

    Article  PubMed  CAS  Google Scholar 

  25. Wu D et al (2010) Antitumor effect and mechanisms of arsenic trioxide on subcutaneously implanted human gastric cancer in nude mice. Cancer Genet Cytogenet 2:90–96

    Article  Google Scholar 

  26. Yeh K et al (2011) Tumor growth inhibition of metastatic nasopharyngeal carcinoma cell lines by low dose of arsenic trioxide via alteration of cell cycle progression and induction of apoptosis. Head Neck 5:734–742

    Article  Google Scholar 

  27. Chen C et al (2007) Arsenic and diabetes and hypertension in human populations: a review. Toxicol Appl Pharmacol 3:298–304

    Article  Google Scholar 

  28. Grandjean P, Murata K (2007) Developmental arsenic neurotoxicity in retrospect. Epidemiology 1:25–26

    Article  Google Scholar 

  29. Smith A et al (1998) Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. Am J Epidemiol 7:660–669

    Article  Google Scholar 

  30. Vahter M (2008) Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol 2:204–211

    Article  Google Scholar 

  31. Chen C et al (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 5:888–892

    Article  Google Scholar 

  32. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1–477

    Google Scholar 

  33. Rossman TG et al (1980) Absence of arsenite mutagenicity in E. coli and Chinese hamster cells. Environ Mutagen 2(3):371–379

    Article  PubMed  CAS  Google Scholar 

  34. Zhao C et al (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA 20:10907–10912

    Article  Google Scholar 

  35. Achanzar W et al (2002) Inorganic arsenite-induced malignant transformation of human prostate epithelial cells. J Natl Cancer Inst 24:1888–1891

    Article  Google Scholar 

  36. Bredfeldt T et al (2006) Monomethylarsonous acid induces transformation of human bladder cells. Toxicol Appl Pharmacol 1:69–79

    Article  Google Scholar 

  37. Chang Q et al (2010) Reduced reactive oxygen species-generating capacity contributes to the enhanced cell growth of arsenic-transformed epithelial cells. Cancer Res 70(12):5127–5135

    Article  PubMed  CAS  Google Scholar 

  38. Pi J et al (2008) Arsenic-induced malignant transformation of human keratinocytes: involvement of Nrf2. Free Radic Biol Med 45(5):651–658

    Article  PubMed  CAS  Google Scholar 

  39. Sens D et al (2004) Inorganic cadmium- and arsenite-induced malignant transformation of human bladder urothelial cells. Toxicol Sc 1:56–63

    Article  Google Scholar 

  40. Dinney CP et al (2004) Focus on bladder cancer. Cancer Cell 6(2):111–116

    Article  PubMed  CAS  Google Scholar 

  41. Nishiyama H et al (2001) Negative regulation of G(1)/S transition by the candidate bladder tumour suppressor gene DBCCR1. Oncogene 23:2956–2964

    Article  Google Scholar 

  42. Jensen TJ et al (2009) Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 241(2):221–229

    Article  PubMed  CAS  Google Scholar 

  43. Frigola J et al (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38(5):540–549

    Article  PubMed  CAS  Google Scholar 

  44. Novak P et al (2006) Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 66(22):10664–10670

    Article  PubMed  CAS  Google Scholar 

  45. Rauch T et al (2007) Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 104(13):5527–5532

    Article  PubMed  CAS  Google Scholar 

  46. Stransky N et al (2006) Regional copy number-independent deregulation of transcription in cancer. Nat Genet 38(12):1386–1396

    Article  PubMed  CAS  Google Scholar 

  47. Benbrahim-Tallaa L et al (2005) Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 3:288–298

    Article  Google Scholar 

  48. Coppin J, Qu W, Waalkes M (2008) Interplay between cellular methyl metabolism and adaptive efflux during oncogenic transformation from chronic arsenic exposure in human cells. J Biol Chem 28:19342–19350

    Article  Google Scholar 

  49. Garbe JC et al (2007) Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 6(15):1927–1936

    Article  PubMed  CAS  Google Scholar 

  50. Stampfer MR, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82(8):2394–2398

    Article  PubMed  CAS  Google Scholar 

  51. Chin K et al (2004) In situ analyses of genome instability in breast cancer. Nat Genet 36(9):984–988

    Article  PubMed  CAS  Google Scholar 

  52. Holst CR et al (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63(7):1596–1601

    PubMed  CAS  Google Scholar 

  53. Li Y et al (2007) Transcriptional changes associated with breast cancer occur as normal human mammary epithelial cells overcome senescence barriers and become immortalized. Mol Cancer 6:7

    Article  PubMed  Google Scholar 

  54. Brenner AJ, Stampfer MR, Aldaz CM (1998) Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17(2):199–205

    Article  PubMed  CAS  Google Scholar 

  55. Geradts J, Wilson PA (1996) High frequency of aberrant p16(INK4A) expression in human breast cancer. Am J Pathol 149(1):15–20

    PubMed  CAS  Google Scholar 

  56. Romanov SR et al (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409(6820):633–637

    Article  PubMed  CAS  Google Scholar 

  57. Nonet GH et al (2001) The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells. Cancer Res 61(4):1250–1254

    PubMed  CAS  Google Scholar 

  58. Stampfer MR et al (2001) Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in p16INK4A(−) human mammary epithelial cells. Proc Natl Acad Sci USA 98(8):4498–4503

    Article  PubMed  CAS  Google Scholar 

  59. Clark R et al (1988) Transformation of human mammary epithelial cells by oncogenic retroviruses. Cancer Res 48(16):4689–4694

    PubMed  CAS  Google Scholar 

  60. Olsen CL et al (2002) Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 21(41): 6328–6339

    Article  PubMed  CAS  Google Scholar 

  61. Stampfer MR, Yaswen P (2003) Human epithelial cell immortalization as a step in carcinogenesis. Cancer Lett 194(2):199–208

    Article  PubMed  CAS  Google Scholar 

  62. Novak P et al (2009) Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res 69(12):5251–5258

    Article  PubMed  CAS  Google Scholar 

  63. Ehrich M et al (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102(44): 15785–15790

    Article  PubMed  CAS  Google Scholar 

  64. Coolen MW et al (2010) Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 12(3):235–246

    PubMed  CAS  Google Scholar 

  65. Walen KH, Stampfer MR (1989) Chromosome analyses of human mammary epithelial cells at stages of chemical-induced transformation progression to immortality. Cancer Genet Cytogenet 37(2):249–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 1U01CA153086-02 and 5P4200494-22 and by the Margaret E. and Fenton L. Maynard Endowment for Breast Cancer Research. Special thanks is given to my collaborator Dr. Martha Stampfer for her insights and enlightenment regarding the biology of human epithelial cells and current lab members working hard on facets of the projects presented herein, Dr. Lukas Vrba and Mr. Paul Severson. Additional thanks are given to all other past and current lab members who have contributed mightily to this scientific enterprise. Finally, I wish to also acknowledge all colleagues in the area of cancer epigenetics whose work informed this chapter, but could not be cited or discussed herein due to time and space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard W. Futscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Futscher, B.W. (2013). Epigenetic Changes During Cell Transformation. In: Karpf, A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, vol 754. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9967-2_9

Download citation

Publish with us

Policies and ethics