Skip to main content

Epigenetic Reprogramming of Mesenchymal Stem Cells

  • Chapter
  • First Online:
Epigenetic Alterations in Oncogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((volume 754))

Abstract

Mesenchymal stem cells (MSCs) are multipotent stem cells of mesodermal origin that can be isolated from various sources and induced into different cell types. Although MSCs possess immune privilege and are more easily obtained than embryonic stem cells, their propensity to tumorigenesis has not been fully explored. Epigenomic changes in DNA methylation and chromatin structure have been hypothesized to be critical in the determination of lineage-specific differentiation and tumorigenesis of MSCs, but this has not been formally proven. We applied a targeted DNA methylation method to methylate a Polycomb group protein-governed gene, Trip10, in MSCs, which accelerated the cell fate determination of MSCs. In addition, targeted methylation of HIC1 and RassF1A, both tumor suppressor genes, transformed MSCs into tumor stem cell-like cells. This new method will allow better control of the differentiation of MSCs and their use in downstream applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agger K, Cloos PA et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734

    PubMed  CAS  Google Scholar 

  2. Alexanian AR (2007) Epigenetic modifiers promote efficient generation of neural-like cells from bone marrow-derived mesenchymal cells grown in neural environment. J Cell Biochem 100:362–371

    PubMed  CAS  Google Scholar 

  3. Arnsdorf EJ, Tummala P et al (2010) The epigenetic mechanism of mechanically induced osteogenic differentiation. J Biomech 43:2881–2886

    PubMed  Google Scholar 

  4. Asahara T, Masuda H et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  5. Balch C, Nephew KP et al (2007) Epigenetic “bivalently marked” process of cancer stem cell-driven tumorigenesis. Bioessays 29:842–845

    PubMed  Google Scholar 

  6. Barrand S, Andersen IS et al (2010) Promoter-exon relationship of H3 lysine 9, 27, 36 and 79 methylation on pluripotency-associated genes. Biochem Biophys Res Commun 401:611–617

    PubMed  CAS  Google Scholar 

  7. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2:S4–S11

    PubMed  CAS  Google Scholar 

  8. Bender CM, Pao MM et al (1998) Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 58:95–101

    PubMed  CAS  Google Scholar 

  9. Bianco P, Gehron Robey P (2000) Marrow stromal stem cells. J Clin Invest 105:1663–1668

    PubMed  CAS  Google Scholar 

  10. Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    PubMed  CAS  Google Scholar 

  11. Bird A (1999) DNA methylation de novo. Science 286:2287–2288

    PubMed  CAS  Google Scholar 

  12. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    PubMed  CAS  Google Scholar 

  13. Bird A, Macleod D (2004) Reading the DNA methylation signal. Cold Spring Harb Symp Quant Biol 69:113–118

    PubMed  CAS  Google Scholar 

  14. Bloushtain-Qimron N, Yao J et al (2009) Epigenetic patterns of embryonic and adult stem cells. Cell Cycle 8:809–817

    PubMed  CAS  Google Scholar 

  15. Boland GM, Perkins G et al (2004) Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 93:1210–1230

    PubMed  CAS  Google Scholar 

  16. Boquest AC, Noer A et al (2006) Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Rev 2:319–329

    PubMed  CAS  Google Scholar 

  17. Bork S, Pfister S et al (2010) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9:54–63

    PubMed  CAS  Google Scholar 

  18. Brazelton TR, Rossi FM et al (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    PubMed  CAS  Google Scholar 

  19. Buhring HJ, Battula VL et al (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    PubMed  Google Scholar 

  20. Burdach S, Plehm S et al (2009) Epigenetic maintenance of stemness and malignancy in peripheral neuroectodermal tumors by EZH2. Cell Cycle 8(13):1991–1996

    PubMed  CAS  Google Scholar 

  21. Burgold T, Spreafico F et al (2008) The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3(8):e3034

    PubMed  Google Scholar 

  22. Cameron EE, Bachman KE et al (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    PubMed  CAS  Google Scholar 

  23. Cao Q, Yu J et al (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27:7274–7284

    PubMed  CAS  Google Scholar 

  24. Carvin CD, Kladde MP (2004) Effectors of lysine 4 methylation of histone H3 in Saccharomyces cerevisiae are negative regulators of PHO5 and GAL1-10. J Biol Chem 279:33057–33062

    PubMed  CAS  Google Scholar 

  25. Caudill MA, Wang JC et al (2001) Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J Nutr 131:2811–2818

    PubMed  CAS  Google Scholar 

  26. Chang L, Adams RD et al (2002) The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes. Proc Natl Acad Sci USA 99:12835–12840

    PubMed  CAS  Google Scholar 

  27. Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16:341–350

    PubMed  Google Scholar 

  28. Christophersen NS, Helin K (2010) Epigenetic control of embryonic stem cell fate. J Exp Med 207:2287–2295

    PubMed  CAS  Google Scholar 

  29. Chuang JC, Warner SL et al (2010) S110, a 5-Aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 9:1443–1450

    PubMed  CAS  Google Scholar 

  30. Cironi L, Provero P et al (2009) Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One 4:e7904

    PubMed  Google Scholar 

  31. Cohen NM, Dighe V et al (2009) DNA methylation programming and reprogramming in primate embryonic stem cells. Genome Res 19:2193–2201

    PubMed  CAS  Google Scholar 

  32. Collas P (2009) Epigenetic states in stem cells. Biochim Biophys Acta 1790:900–905

    PubMed  CAS  Google Scholar 

  33. Cross SH, Bird AP (1995) CpG islands and genes. Curr Opin Genet Dev 5:309–314

    PubMed  CAS  Google Scholar 

  34. da Silva ML, Chagastelles PC et al (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Google Scholar 

  35. de Boer J, Siddappa R et al (2004) Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34:818–826

    PubMed  Google Scholar 

  36. De Boer J, Wang HJ et al (2004) Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10:393–401

    PubMed  Google Scholar 

  37. De Miguel MP, Fuentes-Julian S et al (2010) Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev 6:633–649

    PubMed  Google Scholar 

  38. Dolinoy DC, Weidman JR et al (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    PubMed  CAS  Google Scholar 

  39. Dwyer RM, Kerin MJ (2010) Mesenchymal stem cells and cancer: tumor-specific delivery vehicles or therapeutic targets? Hum Gene Ther 21:1506–1512

    PubMed  CAS  Google Scholar 

  40. El-Osta A (2003) DNMT cooperativity—the developing links between methylation, chromatin structure and cancer. Bioessays 25:1071–1084

    PubMed  CAS  Google Scholar 

  41. Ferrari G, Cusella-De Angelis G et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    PubMed  CAS  Google Scholar 

  42. Fingerman IM, Wu CL et al (2005) Global loss of Set1-mediated H3 Lys4 trimethylation is associated with silencing defects in Saccharomyces cerevisiae. J Biol Chem 280:28761–28765

    PubMed  CAS  Google Scholar 

  43. Gan Q, Yoshida T et al (2007) Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25:2–9

    PubMed  CAS  Google Scholar 

  44. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125

    PubMed  CAS  Google Scholar 

  45. Glinsky GV (2008) “Stemness” genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol 26:2846–2853

    PubMed  Google Scholar 

  46. Gussoni E, Soneoka Y et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  47. Hanna JH, Saha K et al (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–525

    PubMed  CAS  Google Scholar 

  48. Hansen KH, Bracken AP et al (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10:1291–1300

    PubMed  CAS  Google Scholar 

  49. Hematti P (2011) Human embryonic stem cell-derived mesenchymal progenitors: an overview. Methods Mol Biol 690:163–174

    PubMed  CAS  Google Scholar 

  50. Hemberger M, Dean W et al (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10:526–537

    PubMed  CAS  Google Scholar 

  51. Hirata T, Cui YJ et al (2007) The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res 1130:214–222

    PubMed  CAS  Google Scholar 

  52. Holbert S, Dedeoglu A et al (2003) Cdc42-interacting protein 4 binds to huntingtin: neuropathologic and biological evidence for a role in Huntington’s disease. Proc Natl Acad Sci USA 100:2712–2717

    PubMed  CAS  Google Scholar 

  53. Hong S, Cho YW et al (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA 104:18439–18444

    PubMed  CAS  Google Scholar 

  54. Hsiao SH, Huang TH et al (2009) Excavating relics of DNA methylation changes during the development of neoplasia. Semin Cancer Biol 19:198–208

    PubMed  CAS  Google Scholar 

  55. Hsiao SH, Lee KD et al (2010) DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination. Biochem Biophys Res Commun 400:305–312

    PubMed  CAS  Google Scholar 

  56. Hsu CC, Li HP et al (2010) Targeted methylation of CMV and E1A viral promoters. Biochem Biophys Res Commun 402:228–234

    PubMed  CAS  Google Scholar 

  57. Hsu CC, Leu YW et al (2011) Functional characterization of Trip10 in cancer cell growth and survival. J Biomed Sci 18:12

    PubMed  CAS  Google Scholar 

  58. Ji H, Ehrlich LI et al (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467:338–342

    PubMed  CAS  Google Scholar 

  59. Jones PA, Martienssen R (2005) A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res 65:11241–11246

    PubMed  CAS  Google Scholar 

  60. Jones PA, Taylor SM et al (1983) Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res 84:202–211

    PubMed  CAS  Google Scholar 

  61. Jung JW, Lee S et al (2010) Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci 67:1165–1176

    PubMed  CAS  Google Scholar 

  62. Kalari S, Pfeifer GP (2010) Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 70:277–308

    PubMed  CAS  Google Scholar 

  63. Kang TH, Lee JH et al (2007) Epigallocatechin-3-gallate enhances CD8+ T cell-mediated antitumor immunity induced by DNA vaccination. Cancer Res 67:802–811

    PubMed  CAS  Google Scholar 

  64. Kierszenbaum AL (2002) Genomic imprinting and epigenetic reprogramming: unearthing the garden of forking paths. Mol Reprod Dev 63:269–272

    PubMed  CAS  Google Scholar 

  65. Kim D, Yang JY et al (2009) Overexpression of alpha-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells. Biochem Biophys Res Commun 382:745–750

    PubMed  CAS  Google Scholar 

  66. Kirmizis A, Bartley SM et al (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18:1592–1605

    PubMed  CAS  Google Scholar 

  67. Klopp AH, Gupta A et al (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29:11–19

    PubMed  CAS  Google Scholar 

  68. Krause DS, Theise ND et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    PubMed  CAS  Google Scholar 

  69. Lakshmipathy U, Hart RP (2008) Concise review: microRNA expression in multipotent mesenchymal stromal cells. Stem Cells 26:356–363

    PubMed  CAS  Google Scholar 

  70. Lan F, Bayliss PE et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449:689–694

    PubMed  CAS  Google Scholar 

  71. Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci USA 108:2801–2806

    PubMed  CAS  Google Scholar 

  72. Lee KD, Kuo TK et al (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40:1275–1284

    PubMed  CAS  Google Scholar 

  73. Lee OK, Kuo TK et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    PubMed  CAS  Google Scholar 

  74. Leu YW, Rahmatpanah F et al (2003) Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res 63:6110–6115

    PubMed  CAS  Google Scholar 

  75. Leu YW, Yan PS et al (2004) Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res 64:8184–8192

    PubMed  CAS  Google Scholar 

  76. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    PubMed  CAS  Google Scholar 

  77. Lin Y, Weisdorf DJ et al (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    PubMed  CAS  Google Scholar 

  78. Lin YS, Shaw AY et al (2011) Identification of novel DNA methylation inhibitors via a two-component reporter gene system. J Biomed Sci 18:3

    PubMed  CAS  Google Scholar 

  79. Liu YZ, Shao Z et al (2010) Prediction of Polycomb target genes in mouse embryonic stem cells. Genomics 96:17–26

    PubMed  CAS  Google Scholar 

  80. Locke M, Feisst V et al (2011) Concise review: human adipose-derived stem cells (ASC): separating promise from clinical need. Stem Cells 29:404–411

    PubMed  CAS  Google Scholar 

  81. Lodhi IJ, Chiang SH et al (2007) Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes. Cell Metab 5:59–72

    PubMed  CAS  Google Scholar 

  82. Lopez MJ, Spencer ND (2011) In vitro adult rat adipose tissue-derived stromal cell isolation and differentiation. Methods Mol Biol 702:37–46

    PubMed  CAS  Google Scholar 

  83. Martin DI, Cropley JE et al (2008) Environmental influence on epigenetic inheritance at the Avy allele. Nutr Rev 66:S12–S14

    PubMed  Google Scholar 

  84. Mathieu O, Probst AV et al (2005) Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO J 24:2783–2791

    PubMed  CAS  Google Scholar 

  85. Messmer S, Franke A et al (1992) Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. Genes Dev 6:1241–1254

    PubMed  CAS  Google Scholar 

  86. Miller SA, Mohn SE et al (2010) Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol Cell 40:594–605

    PubMed  CAS  Google Scholar 

  87. Mohn F, Weber M et al (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30:755–766

    PubMed  CAS  Google Scholar 

  88. Momin EN, Vela G et al (2010) The oncogenic potential of mesenchymal stem cells in the treatment of cancer: directions for future research. Curr Immunol Rev 6:137–148

    PubMed  CAS  Google Scholar 

  89. Morgan HD, Sutherland HG et al (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    PubMed  CAS  Google Scholar 

  90. Noer A, Boquest AC et al (2007) Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 8:18

    PubMed  Google Scholar 

  91. Noer A, Lindeman LC et al (2009) Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells Dev 18:725–736

    PubMed  CAS  Google Scholar 

  92. Okitsu CY, Hsieh JC et al (2010) Transcriptional activity affects the H3K4me3 level and distribution in the coding region. Mol Cell Biol 30:2933–2946

    PubMed  CAS  Google Scholar 

  93. Opavsky R, Wang SH et al (2007) CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells. PLoS Genet 3:1757–1769

    PubMed  CAS  Google Scholar 

  94. Pacini S, Carnicelli V et al (2010) Constitutive expression of pluripotency-associated genes in mesodermal progenitor cells (MPCs). PLoS One 5:e9861

    PubMed  Google Scholar 

  95. Papp B, Muller J (2006) Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20:2041–2054

    PubMed  CAS  Google Scholar 

  96. Pasini D, Malatesta M et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38:4958–4969

    PubMed  CAS  Google Scholar 

  97. Petersen BE, Bowen WC et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    PubMed  CAS  Google Scholar 

  98. Pittenger MF, Mackay AM et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  99. Pontikoglou C, Deschaseaux F et al (2011) Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Rev 7:569–589

    PubMed  Google Scholar 

  100. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    PubMed  CAS  Google Scholar 

  101. Rajasekhar VK, Begemann M (2007) Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25:2498–2510

    PubMed  CAS  Google Scholar 

  102. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    PubMed  CAS  Google Scholar 

  103. Robert MF, Morin S et al (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33:61–65

    PubMed  CAS  Google Scholar 

  104. Ross SA (2003) Diet and DNA methylation interactions in cancer prevention. Ann N Y Acad Sci 983:197–207

    PubMed  CAS  Google Scholar 

  105. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596

    PubMed  CAS  Google Scholar 

  106. Sanchez-Ramos J, Song S et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    PubMed  CAS  Google Scholar 

  107. Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140

    PubMed  CAS  Google Scholar 

  108. Sawarkar R, Paro R (2010) Interpretation of developmental signaling at chromatin: the Polycomb perspective. Dev Cell 19:651–661

    PubMed  CAS  Google Scholar 

  109. Schlesinger Y, Straussman R et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    PubMed  CAS  Google Scholar 

  110. Schubeler D (2009) Epigenomics: methylation matters. Nature 462:296–297

    PubMed  CAS  Google Scholar 

  111. Schwartz YB, Kahn TG et al (2010) Alternative epigenetic chromatin states of polycomb target genes. PLoS Genet 6:e1000805

    PubMed  Google Scholar 

  112. Seki Y, Yamaji M et al (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134:2627–2638

    PubMed  CAS  Google Scholar 

  113. Sethe S, Scutt A et al (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116

    PubMed  CAS  Google Scholar 

  114. Shafa M, Krawetz R et al (2010) Returning to the stem state: epigenetics of recapitulating pre-differentiation chromatin structure. Bioessays 32:791–799

    PubMed  CAS  Google Scholar 

  115. Sibani S, Melnyk S et al (2002) Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. Carcinogenesis 23:61–65

    PubMed  CAS  Google Scholar 

  116. Siddiqi S, Mills J et al (2010) Epigenetic remodeling of chromatin architecture: exploring tumor differentiation therapies in mesenchymal stem cells and sarcomas. Curr Stem Cell Res Ther 5:63–73

    PubMed  CAS  Google Scholar 

  117. Simile MM, Pascale R et al (1994) Correlation between S-adenosyl-L-methionine content and production of c-myc, c-Ha-ras, and c-Ki-ras mRNA transcripts in the early stages of rat liver carcinogenesis. Cancer Lett 79:9–16

    PubMed  CAS  Google Scholar 

  118. Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10:697–708

    PubMed  CAS  Google Scholar 

  119. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856

    PubMed  CAS  Google Scholar 

  120. Spencer ND, Lopez MJ (2011) In vitro adult canine adipose tissue-derived stromal cell growth characteristics. Methods Mol Biol 702:47–60

    PubMed  CAS  Google Scholar 

  121. Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8:263–271

    PubMed  CAS  Google Scholar 

  122. Su Y, Deng B et al (2011) Polycomb group genes in stem cell self-renewal: a double-edged sword. Epigenetics 6:16–19

    PubMed  CAS  Google Scholar 

  123. Surani MA, Hayashi K et al (2007) Genetic and epigenetic regulators of pluripotency. Cell 128:747–762

    PubMed  CAS  Google Scholar 

  124. Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

    PubMed  CAS  Google Scholar 

  125. Teng IW, Hou PC et al (2011) Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer Res 71:4653–4663

    PubMed  CAS  Google Scholar 

  126. Theise ND, Badve S et al (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31:235–240

    PubMed  CAS  Google Scholar 

  127. Theise ND, Nimmakayalu M et al (2000) Liver from bone marrow in humans. Hepatology 32:11–16

    PubMed  CAS  Google Scholar 

  128. Tiwari VK, McGarvey KM et al (2008) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6:2911–2927

    PubMed  CAS  Google Scholar 

  129. Trento C, Dazzi F (2010) Mesenchymal stem cells and innate tolerance: biology and clinical applications. Swiss Med Wkly 140:w13121

    PubMed  Google Scholar 

  130. Turek-Plewa J, Jagodzinski PP (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10:631–647

    PubMed  CAS  Google Scholar 

  131. Vincent A, Van Seuningen I (2009) Epigenetics, stem cells and epithelial cell fate. Differentiation 78:99–107

    PubMed  CAS  Google Scholar 

  132. Wei Y, Xia W et al (2008) Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 47:701–706

    PubMed  CAS  Google Scholar 

  133. Wei G, Wei L et al (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167

    PubMed  Google Scholar 

  134. Weinhofer I, Hehenberger E et al (2010) H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet 6:e1001152

    PubMed  Google Scholar 

  135. Wolff GL, Kodell RL et al (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12:949–957

    PubMed  CAS  Google Scholar 

  136. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    PubMed  CAS  Google Scholar 

  137. Yamada Y, Watanabe A (2010) Epigenetic codes in stem cells and cancer stem cells. Adv Genet 70:177–199

    PubMed  CAS  Google Scholar 

  138. Yamasaki-Ishizaki Y, Kayashima T et al (2007) Role of DNA methylation and histone H3 lysine 27 methylation in tissue-specific imprinting of mouse Grb10. Mol Cell Biol 27:732–742

    PubMed  CAS  Google Scholar 

  139. Yang XF (2007) Immunology of stem cells and cancer stem cells. Cell Mol Immunol 4:161–171

    PubMed  CAS  Google Scholar 

  140. Yuan R, Fan S et al (2001) Altered gene expression pattern in cultured human breast cancer cells treated with hepatocyte growth factor/scatter factor in the setting of DNA damage. Cancer Res 61:8022–8031

    PubMed  CAS  Google Scholar 

  141. Zager RA, Johnson AC (2010) Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury. Am J Physiol Renal Physiol 298:F827–F837

    PubMed  CAS  Google Scholar 

  142. Zeng X (2007) Human embryonic stem cells: mechanisms to escape replicative senescence? Stem Cell Rev 3:270–279

    PubMed  Google Scholar 

  143. Zheng C, Yang S et al (2009) Human multipotent mesenchymal stromal cells from fetal lung expressing pluripotent markers and differentiating into cell types of three germ layers. Cell Transplant 18:1093–1109

    PubMed  Google Scholar 

  144. Jackson KA, Majka SM et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. JCI 107:1395–1402

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim H.-M. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leu, YW., Huang, T.HM., Hsiao, SH. (2013). Epigenetic Reprogramming of Mesenchymal Stem Cells. In: Karpf, A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, vol 754. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9967-2_10

Download citation

Publish with us

Policies and ethics