Skip to main content

Mitogen-activated protein kinases in the acute diabetic myocardium

  • Chapter
Book cover Biochemistry of Diabetes and Atherosclerosis

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 42))

  • 159 Accesses

Abstract

Diabetes mellitus (DM) causes myocardial remodeling on the subcellular level and alterations in the function of the cell membranes ion transport systems resulting in contractile dysfunction. The present study was aimed to investigate the expression and activation of mitogen-activated protein kinases (MAPKs) and their possible role in the acute diabetic rat hearts. Rats were injected with single dose of streptozotocin (45 mg/kg, i.v.), and after 1 week the disease was manifested by hyperglycemia and cardiac dysfunction. The Langendorff-perfused hearts were subjected to ischemia (5 or 30 min occlusion of LAD coronary artery). The protein pattern in cytosolic fraction of the heart tissue was determined after electrophoretic separation. The levels and activation of MAPKs were determined by Western blot analysis using specific antibodies. No differences between the diabetics and controls in the level of ERKs were found at baseline. However, in DM samples ERKs phosphorylation was markedly increased, and further changes occurred during ischemia. Also content of phoshorylated c-Raf kinase (an upstream activator of ERKs) was slightly increased at baseline conditions in the diabetic samples. In contrast, no significant changes in the contents and phosphorylation of p38-MAPK were observed at baseline. But some differences in the p38-MAPK phosphorylation were found during ischemia.

The results show that differential pattern of protein kinase cascades activation in the diabetic hearts might be account for the modulation of their response to ischemia. (Mol Cell Biochem 249: 59–65, 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haider B, Ahmed SS, Moschos CB, Oldewurtel HA, Regan TJ: Myocardial function and coronary blood flow response to acute ischemia in chronic canine diabetes. Circ Res 40: 577–583, 1977

    Article  PubMed  CAS  Google Scholar 

  2. Tani M, Neely JR: Hearts from diabetic rats are more resistant to in vitro ischemia: Possible role of altered Ca2+ metabolism. Circ Res 62: 931–940, 1988

    Article  PubMed  CAS  Google Scholar 

  3. Ravingerova T, Stetka R, Volkovova K, Pancza D, Dzurba A, Ziegelhöffer A, Styk J: Acute diabetes modulates response to ischemia in isolated rat heart. Mol Cell Biochem 210: 143–151, 2000

    Article  PubMed  CAS  Google Scholar 

  4. Barancik M, Htun P, Strohm C, Kilian S, Schaper W: Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 35: 474–483, 2000

    Article  PubMed  CAS  Google Scholar 

  5. Sugden PH, Clerk A: ’stress-responsive’ mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83: 345–352, 1998

    Article  PubMed  CAS  Google Scholar 

  6. Marais E, Genade S, Huisamen B, Strijdom JG, Moolman JA, Lochner A: Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol 33: 769–778, 2001

    Article  PubMed  CAS  Google Scholar 

  7. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL: Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99: 1685–1691, 1999

    Article  PubMed  CAS  Google Scholar 

  8. Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M, Rhodes CJ, King GL: Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest 103: 185–195, 1999

    Article  PubMed  CAS  Google Scholar 

  9. Parekh VV, Hoffman JL, Younoszai MK: Effect of diabetes and difluoromethylornithine treatment on hyperplasia, activity of MAP-kinase, and activity and association with cyclin B of p34cdc2 kinase in rat jejunal mucosa. J Invest Med 46: 76–81, 1998

    CAS  Google Scholar 

  10. Haneda M, Araki S, Togawa M, Sugimoto T, Isono M, Kikkawa R: Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 46: 847–853, 1997

    Article  PubMed  CAS  Google Scholar 

  11. Awazu M, Ishikura K, Hida M, Hoshiya M: Mechanisms of mitogenactivated protein kinase activation in experimental diabetes. J Am Soc Nephrol 10: 738–745, 1999

    PubMed  CAS  Google Scholar 

  12. Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY: High glucose-induced apoptosis in human endothelial cells is mediated by sequential activation of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 101:2618–2624, 2000

    Article  PubMed  CAS  Google Scholar 

  13. Liu W, Schoenkerman A, Lowe WL Jr: Activation of members of the mitogen-activated protein kinase family by glucose in endothelial cells. Am J Physiol Endocrinol Metab 279: E782–E790, 2000

    PubMed  CAS  Google Scholar 

  14. Clerk A, Bogoyevitch MA, Anderson MB, Sugden PH: Differential activation of protein kinase C isoforms by endothelin-1 and phenylepinephrine, and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem 269: 32848–32857, 1994

    PubMed  CAS  Google Scholar 

  15. Foncea R, Anderson M, Ketterman A, Blakesley V, Sapag-Hagar M, Sugden PH, LeRoith D, Lavandero S: Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem 272: 19115–19124, 1997

    Article  PubMed  CAS  Google Scholar 

  16. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, Tamemoto H, Kadowaki T, Nagai R, Yazaki Y: Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 268: 12069–12076, 1993

    PubMed  CAS  Google Scholar 

  17. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78: 1027–1037, 1994

    Article  PubMed  CAS  Google Scholar 

  18. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ: Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: 7420–7426, 1995

    Article  PubMed  CAS  Google Scholar 

  19. Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Magun BE: Ultraviolet radiation triggers the ribotoxic stress response in mammalian cells. J Biol Chem 273: 15794–15803, 1998

    Article  PubMed  CAS  Google Scholar 

  20. Yuasa T, Ohno S, Kehrl JH, Kyriakis JM: Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38: Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J Biol Chem 273: 22681–22692, 1998

    Article  PubMed  CAS  Google Scholar 

  21. Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Burke TR Jr, Quon MJ, Reed BC, Dikic I, Noel LE, Newgard CB, Farese R: Glucose activates mitogen-activated protein kinase (extracellular signal-regulated kinase) through proline-rich tyrosine kinase-2 and the Glut 1 glucose transporter. J Biol Chem 275: 40817–40826, 2000

    Article  PubMed  CAS  Google Scholar 

  22. Haneda M, Kikkawa R, Sugimoto T, Koya D, Araki S, Togawa M, Shigeta Y: Abnormalities in protein kinase C and MAP kinase cascade in mesangial cells cultured under high glucose conditions. J Diabetes Complications 9: 246–248, 1995

    Article  PubMed  CAS  Google Scholar 

  23. Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Quon MJ, Reed BC, Dikic I, Farese RV: Glucose activates protein kinase C-zeta/lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: A novel mechanism for activating glucose transporter translocation. J Biol Chem 276: 35537–35545, 2001

    Article  PubMed  CAS  Google Scholar 

  24. Tomlinson DR: Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 42: 1271–1281, 1999

    Article  PubMed  CAS  Google Scholar 

  25. Kang MJ, Wu X, Ly H, Thai K, Scholey JW: Effect of glucose on stress-activated protein kinase activity in mesangial cells and diabetic glomeruli. Kidney Int 55: 2203–2214, 1999

    Article  PubMed  CAS  Google Scholar 

  26. Fernyhough P, Gallagher A, Averill SA, Priestley JV, Hounsom L, Patel J, Tomlinson DR: Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes 48: 881–889, 1999

    Article  PubMed  CAS  Google Scholar 

  27. Dunlop ME, Muggli EE: Small heat shock protein alteration provides a mechanism to reduce mesangial cell contractility in diabetes and oxidative stress. Kidney Int 57: 464–475, 2000

    Article  PubMed  CAS  Google Scholar 

  28. Kikkawa R: Chronic complications in diabetes mellitus. Br J Nutrition 84 Suppl 2: S183–S185, 2000

    Article  CAS  Google Scholar 

  29. Ping P, Zhang J, Cao X, Li RC, Kong D, Tang XL, Qiu Y, Manchikalapudi S, Auchampach JA, Black RG, Bolli R: PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol Heart Circ Physiol 276: H1468–H1481, 1999

    CAS  Google Scholar 

  30. Strohm C, Barancik M, v.Brühl ML, Kilian SAR, Schaper W: Inhibiton of the ER-Kinase by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J Cardiovasc Pharmacol 36:218–229, 2000

    Article  PubMed  CAS  Google Scholar 

  31. Kuwahara K, Saito Y, Kishimoto I, Miyamoto Y, Harada M, Ogawa E, Hamanaka I, Kajiyama N, Takahashi N, Izumi T, Kawakami R, Nakao K: Cardiotrophin-1 phosphorylates Akt and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. J Mol Cell Cardiol 32: 1385–1394, 2000

    Article  PubMed  CAS  Google Scholar 

  32. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH: Stimulation of the stress-activated mitogen-activated protein kinases subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79: 162–173, 1996

    Article  PubMed  CAS  Google Scholar 

  33. Knight RJ, Buxton DB: Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat hearts. Biochem Biophys Res Commun 218: 83–88, 1996

    Article  PubMed  CAS  Google Scholar 

  34. Behrends M, Schulz R, Post H, Alexandrov A, Belosjorow S, Michel MC, Heusch G: Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol Heart Circ Physiol 279: H1111–H1119, 2000

    PubMed  CAS  Google Scholar 

  35. Shimizu N, Yoshiyama M, Omura T, Hanatani A, Kim S, Takeuchi K, Iwao H, Yoshikawa J: Activation of mitogen-activated protein kinases and activator protein-1 in myocardial infarction in rats. Cardiovasc Res 38: 116–124, 1998

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strniskova, M., Barancik, M., Neckar, J., Ravingerova, T. (2003). Mitogen-activated protein kinases in the acute diabetic myocardium. In: Gilchrist, J.S.C., Tappia, P.S., Netticadan, T. (eds) Biochemistry of Diabetes and Atherosclerosis. Developments in Molecular and Cellular Biochemistry, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9236-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9236-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4852-8

  • Online ISBN: 978-1-4419-9236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics