Skip to main content

Changes in the Central Auditory System with Deafness and Return of Activity via a Cochlear Prosthesis

  • Chapter
Acoustical Signal Processing in the Central Auditory System

Abstract

It is well established that sensory deprivation during development results in lasting changes in the central nervous system (CNS) (Wiesel and Hubel. 1963). This is certainly the case for the auditory system where in developing animals, sound deprivation and/or cochlear ablation are especially potent means of producing significant neuronal atrophy and reorganization in central structures (Rubel et al., 1984). The loss of afferent input often occurs in the adult auditory system and there is increasing evidence that the mature central auditory system (CAS) also displays substantial changes in structure and function following deafferentation (Gerken, 1979; Rajan et al., 1993, 1996, Willott et al., 1994). However, despite the high incidence of inner ear pathology and a growing utilization of the cochlear prosthesis in deaf adults, little is known about the effects of cochlear damage on the mature CAS, the mechanisms underlying CNS physiological changes produce by deafness, or how deafness induced changes may affect processing with subsequent reactivation of the CAS via a cochlear prosthesis. Elucidating how the CAS responds to such deafferentation is fundamental to our understanding the mechanisms of plasticity and homeostasis of the brain throughout an organisms lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C. (1995) Sound stimulation induces fos related antigen in cells with common morphological properties throughout the auditory brainstem. J. Comp. Neurol. 361. 645–668.

    Article  PubMed  CAS  Google Scholar 

  • Altschuler, R.A., Raphael. Y., Dupont, J., Sato, K. and Miller. J.M. (1995) Active mechanisms in the response of the auditory system to over or under stimulation. In: A. Flock, D. Ottoson and M. Ulfendahl (Eds.). Active Hearing, Elsevier, pp. 239–256.

    Google Scholar 

  • Bergman. M., Staatz-Benson, C. and Potashner, S.J. (1989) Amino acid uptake and release in the guinea pig cochlear nucleus after inferior colliculus ablation. Hear. Res. 42, 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Birder, L.A., Roppolo. J.R., ladarola. MJ. and deGroat. W.C. (1991) Electrical stimulation of visceral afferent pathways in the pelvic nerve increases c-fos in the rat spinal cord. Neurosci. Lett. 129. 193–196.

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe. S.C., Jr., McLaren. J.D. and Meyer. J.R. (1989) Potassium-induced release of endogenous glutamate and two as yet unidentified substances from the lateral line of Xenopus laevis. Brain Res. 493. 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe, S.C., Nagase, S., Miller, J.M. and Altschuler, R.A. (1995) Deafness-induced plasticity in the mature central auditory system. NeuroReport 7. 225–229.

    PubMed  Google Scholar 

  • Bledsoe, S.C., Rupert, A.L. and Mousehegian. G. (1982) Response characteristics of cochlear nucleus neurons to 500 Hz tones and noise: Findings related to frequency-following potentials. J. Neurophysiol. 47, 113–128.

    PubMed  Google Scholar 

  • Brown, M.C. and Liu. T.S. (1995) Fos-like immunoreactivity in central auditory neurons of the mouse. J. Comp. Neurol. 357, 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Canady, K.S. and Rubel, F.W. (1992) Rapid and reversible astrocytic reaction to afferent activity blockade in chick cochlear nucleus. J. Neurosci. 12, 1001–1009.

    PubMed  CAS  Google Scholar 

  • Clopton. B.M., Spelman. F.A., Glass. I., Pfingst, B.E., Miller, J.M., Lawrence, P.D. and Dean, D.P. (1983) Neural encoding of electrical signals. Ann. N. Y. Acad. Sci. 405, 146–158.

    Article  PubMed  CAS  Google Scholar 

  • Colombo, J. and Parkins. C.W. (1987) A model of electrical excitation of the mammalian auditory-nerve neuron. Hear. Res. 31. 287–311.

    Article  PubMed  CAS  Google Scholar 

  • Curran, T. and Morgan, J.I. (1987) Memories of fos. Bioessays 7, 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M. and Robertson, H.A. (1987) Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 391, 441–142.

    Article  Google Scholar 

  • Dupont, J., Zoli, M., Agnati, L.F. and Aran. J.M. (1992) Morphofunctional changes in guinea pig brainstem auditory nuclei after peripheral deafferentation: A hypothesis about central mechanisms of tinnitus. In: J.M. Aran and R. Dauman (Eds.), Tinnitus. Kluger, Amsterdam, pp. 195–205.

    Google Scholar 

  • Dupont, J., Bonneau, J.M., Altschuler, R.A. and Aran, J.-M. (1994) GABA and glycine changes in the guinea pig brainstem auditory nuclei after total destruction of the inner ear. Assoc. Res. Otolaryngol. Abstr. 17, II.

    Google Scholar 

  • Dupont, J. and Altschuler, R.A. (1996) Glycine and cell size plasticity in the superior olivary complex of the adult guinea pig after partial and total cochlear deafferentation. Assoc. Res. Otolaryngol. Abstr. 19, 154.

    Google Scholar 

  • Ehret, G. and Fischer, R. (1991) Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res. 567, 350–354.

    Article  PubMed  CAS  Google Scholar 

  • Faingold, C.L., Gehlbach. G. and Caspary. D.M. (1991) Functional pharmacology of inferior colliculus neurons. In: R. Altschuler, R. Bobbin, D, Hoffman and B. Clopton (Eds.). Neurobiology of Hearing II: The Central Auditory System. Raven Press, New York. pp. 223–251.

    Google Scholar 

  • Friauf, E. (1991) C-fos immunohistochemistry reveals no shift of tonotopic order in the central auditory system of developing rats. Soc. Neurosci. Abstr. 17, 123.

    Google Scholar 

  • Gerken, G.M. (1979) Central denervation hypersensitivity in the auditory system of the cat. J. Acoust. Soc. Am. 66, 721–727.

    Article  PubMed  CAS  Google Scholar 

  • Gerken, G.M., Saunders. S.S. and Paul, R.E. (1984) Hypersensitivity to electrical stimulation of auditory nuclei follows hearing loss in cats. Hear. Res. 13. 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith, J.D., Kujawa, S.G., McLaren, J.D. and Bledsoe, S.C. Jr. (1995) In vivo release of neuroactive amino acids from the inferior colliculus of the guinea pig using brain microdialysis. Hear. Res. 83, 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Gulley, R.L., Wenthold, RJ. and Neises, G.R. (1978) Changes in the synapses of spiral ganglion cells in the rostral anteroventral cochlear nucleus of the waltzing guinea pig. Brain Res. 158, 279–294.

    Article  PubMed  CAS  Google Scholar 

  • Helfert, R.H., Juiz, J.M., Bledsoe, S.C, Bonneau, J.M., Wenthold, R.J. and Altschuler, R.A. (1992) Patterns of glutamate, glycine, and GABA immunolabeling in four synaptic terminal classes in the lateral superior olive of the guinea pig. J. Comp. Neurol. 323, 305–325.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S.H. and Jones, E.G. (1988) Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys. Neuron 1, 701–712.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, G.E., Smith, M.S. and Verbalis, J.G. (1993) C-fos related immediate early gene products as markers of activity in neuroendocrine systems. Front. Neuroendocrinol 3, 173–213.

    Article  Google Scholar 

  • Hultcrantz. M., Snyder, R., Robscher, S. and Leake. P. (1991) Effects of neonatal deafening and chronic intracochlear electrical stimulation on the cochlear nucleus in cats. Hear. Res. 54, 272–280.

    Article  PubMed  CAS  Google Scholar 

  • Javel, E., Tong. Y.C.. Shepherd, R.K. and Clark, G.M. (1987) Responses of cat auditory nerve to biphasic electrical current pulses. Ann. Otol. Rhinol. Laryngol. 96 (Suppl.128), 26–30.

    Google Scholar 

  • Jyung, R.W., Miller, J.M. and Cannon. S.C. (1989) Evaluation of eighth nerve integrity by the electrically evoked middle latency response. Arch. Otolaryngol. Head Neck Surg. 101, 670–682.

    CAS  Google Scholar 

  • Kiang, N.Y.S. and Moxon, E.C. (1972) Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. Rhinol. Laryngol. (St Louis) 81, 714–730.

    CAS  Google Scholar 

  • Kuwada, S., Yin, T.C.T., Syka. J., Buunen. T.J.F. and Wickesberg, R.E. (1984) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. J. Neurophysiol. 51, 1306–1325.

    PubMed  CAS  Google Scholar 

  • Leake, P.A. and Hradek, G.T. (1988) Cochlear pathology of long term neomycin induced deafness in cats. Hear. Res. 33, 11–34.

    Article  PubMed  CAS  Google Scholar 

  • Lesperance, M.M., Helfen, R.H. and Altschuler, R.A. (1995) Deafness induced cell size changes in rostal AVCN of the guinea pig. Hear. Res. 86, 77–81

    Article  PubMed  CAS  Google Scholar 

  • Lim, A., Myers, M.W., Miller, J.M. and Altschuler, R.A. (1991) C-fos expression in rat auditory nuclei following high-intensity acoustic stimulation. Soc. Neurosci. Abstr. 17. 163.

    Google Scholar 

  • Lustig. L.R., Leake, P.A., Snyder, R.L. and Rebscher, S.J. (1994) Changes in the cat cochlear nucleus following neonatal deafening electrical stimulation. Hear. Res. 74. 29–37.

    Article  PubMed  CAS  Google Scholar 

  • McFadden. S.L. and Willott. J.F. (1994a) Responses of inferior colliculus neurons in C57BL/6J mice with and without sensorineural hearing loss: effects of changing the azimuthal location of an unmasked pure-tone stimulus. Hear. Res. 78, 115–131.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, S.L. and Willott, J.F. (1994b) Responses of inferior colliculus neurons in C57BL/6J mice with and without sensorineural hearing loss: effects of changing the azimuthal location of a continuous noise masker on responses to contralateral tones. Hear. Res, 78, 132–148.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.M., Altschuler. R.A.. Dupont. J.. Lesperance. M. and Tucci. D. (1996) Consequences of deafness and electrical stimulation on the auditory system. In: R.J. Salvi, D. Henderson, F. Fiorino and V. Colletti (Eds.). Auditory Plasticity and Regeneration, Tieman Med. Publishers, New York, pp. 378–391.

    Google Scholar 

  • Miller, J.M., Altschuler, R.A., Niparko. J.K.. Hartshorn, D.O., Heitert. R.H. and Moore, J.K. (1992) Deafness-induced changes in the central nervous system: reversibility and prevention. In: A.L. Dancer, D. Henderson. R.J. Salvi and R.P. Hamernik (Eds.), Noise-Induced hearing Loss, Mosby Year Book, St. Louis, pp. 130–145.

    Google Scholar 

  • Nagase. S., Lim, H.H., Miller, J.M., Dupont, J. and Altschuler R.A. (1997a) Expression of fos protein in the auditory brain stem following electrical stimulation of the cochlea. I: Changes with intensity and electrode position. Submitted to Hear. Res.

    Google Scholar 

  • Nagase, S., Miller, J.M., Prieskorn, D., Dupont. J. and Altschuler R.A. (1997b) Expression of fos protein in the auditory brain stem following electrical stimulation of the cochlea. II: Changes with deafness and stimulation. Submitted to Hear. Res.

    Google Scholar 

  • Nordeen. K.W., Killackey. H.P. and Kitzes, L.M. (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbii, Meriones unguiculatus. J. Comp. Neurol. 214, 144–153.

    Article  PubMed  CAS  Google Scholar 

  • Parkins, C.W. (1989) Temporal response patterns of auditory nerve fibers to electrical stimulation in deafened squirrel monkeys. Hear. Res. 41, 137–168.

    Article  PubMed  CAS  Google Scholar 

  • Pasic, T.R. and Rubel, E.W. (1989) Rapid changes in cochlear nucleus cell size following blockade of auditory nerve electrical activity in gerbils. J. Comp. Neurol. 283, 474–480.

    Article  PubMed  CAS  Google Scholar 

  • Potashner, S.J., Lindberg, N. and Morest, D.K. (1985) Uptake and release of gamma-aminobutyric acid in the guinea pig cochlear nucleus after axotomy of cochlear and centrifugal fibers. J. Neurochem. 45, 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Rajan, R. and Irvine, D.R.F. (1996) Features of and boundary conditions for lesion induced reorganization of adult cortical maps. In: R.J. Salvi, D. Henderson, F. Fiorini and V. Colletti (Eds.), Auditory System Plasticity and Regeneration, Thieme Medical Publishers, Inc. NY, pp. 224–237.

    Google Scholar 

  • Rajan, R., Irvine, D.R.F., Wise, L.Z. and Heil, P. (1993) Effect of partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 338, 17–49.

    Article  PubMed  CAS  Google Scholar 

  • Rees, S., Guldner, F.H. and Aitkin, L. (1985) Activity dependent plasticity of postsynaptic density structure in the ventral cochlear nucleus of the rat. Brain Res. 325, 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Rouiller, E.M.. Wan, X.S.T., Moret. V. and Liang, F. (1992) Mapping of c-fos expression elicited tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus. Neurosci. Lett. 144, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Rubel, E.W., Born, D.E., Deitch. J.S. and Durham, D. (1984) Recent advances toward understanding auditory system development. In: C. Berlin (Ed.), Hearing Science, College Hill, San Diego, pp. 109–157.

    Google Scholar 

  • Rubel, E.W., Hyson, R.L. and Durham, D. (1990) Afferent regulation of neurons in brain stem auditory system. J. Neurobiol. 21, 169–196.

    Article  PubMed  CAS  Google Scholar 

  • Ryan. A.F., Miller, J.M., Wang, Z.X. and Woolf. N.K. (1990) Spatial distribution of neural activity evoked by electrical stimulation of the cochlea. Hear. Res. 50, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Sagar, S.M. and Sharp, F.R. (1991) Light induces a Fos-like nuclear antigen in retinal neurons. Molecular Brain Res. 7, 17–21.

    Article  Google Scholar 

  • Salvi, R.J., Wang, J. and Powers, N. (1996) Rapid functional reorganization in the inferior colliculus and cochlear nucleus after acute cochlear damage. In: R.J. Salvi, D. Henderson. F. Fiorini and V. Colletti (Eds.). Auditory System Plasticity and Regeneration, Thieme Medical Publishers, Inc. New York, pp. 275–296.

    Google Scholar 

  • Sanes, D.H. (1994) Glycine receptor distribution is dependent on excitatory and inhibition afferents in the gerbil LSO. Assoc. Res. Otolaryngol. Abstr. 17, 10.

    Google Scholar 

  • Sato, K.. Houtani, T., Ueyama, T., Ikeda, M. Yamashita, T.. Kumazawa, T. and Sugimoto, T. (1992) Mapping of the cochlear nucleus subregions in the rat with neuronal Fos protein induced by acoustic stimulation with low tones. Neurosci. Lett. 142. 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Sato. K., Houtani. T.. Ueyama, T.. Ikeda. M.. Yamashita, T.. Kumazawa, T. and Sugimoto, T. (1993) Identification of rat brainstem sites with neuronal fos protein induced by acoustic stimulation with pure tones. Acta Otolaryngol. (Stockh) Suppl. 500, 18–22.

    Article  CAS  Google Scholar 

  • Schwartz, D.R., Schacht, J., Miller. J.M., Frey. K. and Altschuler. R.A. (1993) Chronic electrical stimulation reverses deafness-related depression of electrically evoked 2-deoxyglucose activity in the guinea pig inferior colliculus. Hear. Res. 70. 463–477.

    Article  Google Scholar 

  • Semple, M.N. and Kitzes, L.M. (1985) Single unit responses in the gerbil inferior colliculus: different consequences of contralateral and ipsilateral auditory stimulation. J. Neurophysiol. 53. 1467–1482.

    PubMed  CAS  Google Scholar 

  • Snyder. R.L., Rebscher. S.J., Cao, K., Leake. P.A. and Kelly. K. (1990) Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hear. Res. 50. 7–34.

    Article  PubMed  CAS  Google Scholar 

  • Snyder. R.L., Rebscher, S.J., Leake, P.A., Kelly, K. and Cao, K. (1991 ) Chronic intracochlear electrical stimulation in the neonatally deafened cat. II. Temporal properties of neurons in the inferior colliculus. Hearing Res. 56. 246–64.

    Article  CAS  Google Scholar 

  • Urban, G.P. and Willott, J.F. (1979) Response properties of neurons in inferior colliculi of mice made susceptible to audiogenic seizures by acoustic priming. Exp. Neurol. 63. 229–243.

    Article  PubMed  CAS  Google Scholar 

  • van den Honert, C. and Stypulkowski. P.H. (1984) Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hear. Res. 14, 225–243.

    Article  PubMed  Google Scholar 

  • van den Honert, C. and Stypulkowski, P.H. (1987) Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli. Hear. Res. 29. 207–222.

    Article  PubMed  Google Scholar 

  • Vischer, M.W., Hausler, R. and Rouiller, E.M. (1994) Distribution of Fos-like immunoreactivity in the auditory pathway of the Sprague-Dawley rat elicited by cochlear electrical stimulation. Neurosci. Res. 19, 175–185.

    Article  PubMed  Google Scholar 

  • Webster, M. and Webster. D.B. (1981) Spiral ganglion neuron loss following organ of Corti loss. A quantitative study. Brain Res. 212, 17–30.

    Article  CAS  Google Scholar 

  • Webster, D.B. (1988) Conductive hearing loss affects the growth of the cochlear nuclei over an extended period of time. Hear. Res. 32, 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T.N. and Hubel, D.H. (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017.

    PubMed  CAS  Google Scholar 

  • Willott, J.F. (1994) Auditory system plasticity in the adult C57BL/6J mouse. (Abstract) Auditory Plasticity and Regeneration: Scientific and Clinical Implications. Terme di Comano, Trento, Italy, May 4-7.

    Google Scholar 

  • Willott, J.F., Bross, L.S. and McFadden, S.L. (1994) Morphology of the cochlear nucleus in CBA/J mice with chronic severe sensorineural cochlear pathology induced during adulthood. Hear. Res. 74, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Willott, J.F., Demuth, R.M. and Lu, S.M. (1984) Excitability of auditory neurons in the dorsal and ventral cochlear nuclei of DBA/2 and C57BL/6 mice. Exp. Neurol. 83, 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Zappia, J.J. and Altschuler, R.A. (1989) Evaluation of the effect of ototopical neomycin on spiral ganglion cell density in the guinea pig. Hear. Res. 40. 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.S., Haenggeli, CA., Tempini, A., Vischer, M.W., Moret, V. and Rouiller, E.M. (1996) Electrically induced Fos-like immunoreactivity in the auditory pathway of the rat: Effects of survival time, duration, and intensity of stimulation. Brain Res. Bull. 39, 75–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bledsoe, S.C., Nagase, S., Altschuler, R.A., Miller, J.M. (1997). Changes in the Central Auditory System with Deafness and Return of Activity via a Cochlear Prosthesis. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics