Skip to main content

Integrating Shape and Texture in 3D Deformable Models: From Metamorphs to Active Volume Models

  • Chapter
  • First Online:

Abstract

For the purpose of object boundary extraction, traditional shape-based deformable models rely on external image forces that come primarily from edge or image gradient information. Such reliance on local edge information makes the models prone to get stuck in local minima due to image noise and various other image artifacts. In this chapter, we review a 2D deformable model – Metamorphs, which integrates region texture constraints so as to achieve more robust segmentation. Compared with traditional shape-based models, Metamorphs segmentation result is less dependent on model initialization and not sensitive to noise and spurious edges inside the object of interest. Then, we review Active Volume Model (AVM), a similar and improved approach for 3D segmentation. The shape of this 3D model is considered as an elastic solid, with a simplex-mesh surface made of thousands of vertices. Deformations of the model are derived from a linear system that encodes external forces from the boundary of a Region of Interest (ROI), which is a binary mask representing the object region predicted by the current model. Efficient optimization and fast convergence of the model are achieved using the Finite Element Method (FEM). To further improve segmentation performance, a multiple-surface constraint is also employed to incorporate spatial constraints among multiple objects. It uses two surface distance-based functions to adaptively adjust the weights of contribution from the image-based region information and from spatial constraints among multiple interacting surfaces. Several applications are shown to demonstrate the benefits of these segmentation algorithms based on deformable models that integrate multiple sources of constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An MSAVM can also be without an outer AVM.

References

  1. Kass M, Witkin A, Terzopoulos D (1987) Snakes: active contour models. Int J Comput Vis 1:321–331

    Article  Google Scholar 

  2. Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  3. Cootes T, Edwards G, Taylar C (1998) Active appearance models. Proc Eur Conf Comput Vis 2:484–498

    Google Scholar 

  4. Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape model their training and application. Comput Vis Image Underst 61:38–59

    Article  Google Scholar 

  5. Staib L, Duncan J (1992) Boundary finding with parametrically deformable models. IEEE Trans Pattern Anal Mach Intell 14(11):1061–1075

    Article  Google Scholar 

  6. Metaxas DN, Terzopoulos D (1993) Shape and nonrigid motion estimation through physics-based synthesis. IEEE Trans Pattern Anal Mach Intell 15(6):580–591

    Article  Google Scholar 

  7. Xu C, Prince J (1998) Snakes, shapes and gradient vector flow. IEEE Trans Image Process 7:359–369

    Article  PubMed  CAS  Google Scholar 

  8. Zhu S, Yuille A (1996) Region competition: unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884–900

    Article  Google Scholar 

  9. Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vis 72(2):195–215

    Article  Google Scholar 

  10. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247

    Article  Google Scholar 

  11. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  PubMed  CAS  Google Scholar 

  12. Fan X, Bazin P-L, Prince J (2008) A multi-compartment segmentation framework with homeomorphic level sets. In: CVPR, June 2008, pp 1–6

    Google Scholar 

  13. Subakan O, Vemuri B (2008) Image segmentation via convolution of a level-set function with a Rigaut kernel. In: CVPR, June 2008, pp 1–6

    Google Scholar 

  14. Li H, Yezzi A (2007) Local or global minima: flexible dual-front active contours. IEEE Trans Pattern Anal Mach Intell 29(1):1–14

    Article  PubMed  Google Scholar 

  15. Yang J, Duncan J (2004) 3D image segmentation of deformable objects with joint shape-intensity prior models using level sets. Med Image Anal 8(3):285–294

    Article  PubMed  Google Scholar 

  16. Kohlberger T, Cremers D, Rousson M, Ramaraj R, Funka-Lea G (2006) 4D shape priors for a level set segmentation of the left myocardium in SPECT sequences. In: MICCAI (1), pp 92–100

    Google Scholar 

  17. Zhu Y, Papademetris X, Sinusas A, Duncan J (2008) Segmentation of left ventricle from 3D cardiac MR image sequences using a subject-specific dynamical model. In: CVPR, June 2008, pp 1–8

    Google Scholar 

  18. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac ct volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27:1668–1681

    Article  PubMed  Google Scholar 

  19. Costa M, Delingette H, Novellas S, Ayache N (2007) Automatic segmentation of bladder and prostate using coupled 3D deformable models. In: MICCAI (1), pp 252–260

    Google Scholar 

  20. Huang X, Metaxas D, Chen T (2004) Metamorphs: deformable shape and texture models. In: CVPR, 2004, pp 496–503

    Google Scholar 

  21. Huang X, Metaxas DN (2008) Metamorphs: deformable shape and appearance models. IEEE Trans Pattern Anal Mach Intell 30(8):1444–1459

    Article  PubMed  Google Scholar 

  22. Huang J, Huang X, Metaxas DN, Axel L (2007) Adaptive metamorphs model for 3D medical image segmentation. In: MICCAI, pp 302–310

    Google Scholar 

  23. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169

    Article  Google Scholar 

  24. Shen T, Zhu Y, Huang X, Huang J, Metaxas D, Axel L (2008) Active volume models with probabilistic object boundary prediction module. In: MICCAI, pp 331–341

    Google Scholar 

  25. Zhang S, Zhou J, Wang X, Chang S, Metaxas D, Pappas G, Delis F, Volkow N, Wang G, Thanos P, Kambhamettu C (2009) 3D segmentation of rodent brains using deformable models and variational methods. In: MMBIA’09

    Google Scholar 

  26. Shen T, Li H, Qian Z, Huang X (2009) Active volume models for 3D medical image segmentation. In: CVPR

    Google Scholar 

  27. Spreeuwers L, Breeuwer M (2003) Detection of left ventricular epi-and endocardial borders using coupled active contours. In: Computer assisted radiology and surgery, pp 1147–1152

    Google Scholar 

  28. Zeng X, Staib L, Schultz R, Duncan J (1999) Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation. IEEE Trans Med Imaging 18:927–937

    Article  PubMed  CAS  Google Scholar 

  29. Li K, Wu X, Chen D, Sonka M (2006) Optimal surface segmentation in volumetric images – a graph-theoretic approach. IEEE Trans Pattern Anal Mach Intell 28(1):119–134

    Article  PubMed  CAS  Google Scholar 

  30. MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12(3):340–356

    Article  PubMed  CAS  Google Scholar 

  31. Huang X, Paragios N, Metaxas D (2003) Establishing local correspondences towards compact representations of anatomical structures. In: MICCAI, pp 926–934

    Google Scholar 

  32. Elgammal AM, Harwood D, Davis LS (2000) Non-parametric model for background subtraction. In: ECCV, pp 751–767

    Google Scholar 

  33. Huang X, Paragios N, Metaxas D (2006) Shape registration in implicit spaces using information theory and free form deformations. IEEE Trans Pattern Anal Mach Intell 28(8):1303–1318

    Article  PubMed  Google Scholar 

  34. Turk G, O’Brien JF (1999) Shape transformation using variational implicit functions. In: The Proceedings of ACM SIGGRAPH 99, pp 335–342

    Google Scholar 

  35. Cohen L, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 15:1131–1147

    Article  Google Scholar 

  36. Logan DL (2006) A first course in the finite element method, 4th edn. CL Engineering, India

    Google Scholar 

  37. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22:61–79

    Article  Google Scholar 

  38. Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: CVPR, vol 1. pp 430–436

    Google Scholar 

  39. Popovic A, de la Fuente M, Engelhardt M, Radermacher K (2007) Statistical validation metric for accuracy assessment in medical image segmentation. Int J Comput Assist Radiol Surg 2:169–181

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Leon Axel (NYU) for providing the heart CT volume data, and Prof. Panayotis K. Thanos (Brookhaven National Lab) for providing the rat brain data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoting Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shen, T., Zhang, S., Huang, J., Huang, X., Metaxas, D.N. (2011). Integrating Shape and Texture in 3D Deformable Models: From Metamorphs to Active Volume Models. In: El-Baz, A., Acharya U, R., Mirmehdi, M., Suri, J. (eds) Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8195-0_1

Download citation

Publish with us

Policies and ethics