Skip to main content

Hox Genes and the Body Plans of Chelicerates and Pycnogonids

  • Chapter
Hox Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 689))

Abstract

Hox genes are found in all metazoan phyla and are involved in specifying identity along the anterior-posterior body axis. In arthropods, ten different classes of Hox genes can be distinguished, which are expressed in a typical staggered array along the anterior-posterior axis of the embryo in characteristically stable domains. These features have been used to align segments between different arthropod groups and in this way have contributed to solving longstanding zoological questions. In this chapter I summarize Hox gene data from chelicerates, including the enigmatic pycnogonids (sea spiders) and how these data have helped us to understand the body plans of different arthropod taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Westheide W, Rieger R. Spezielle Zoologie Teil 1: Einzeller und Wirbellose Tiere, 1st ed. Stuttgart: Gustav Fischer Verlag, 1996.

    Google Scholar 

  2. Friedrich M, Tautz D. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 1995; 376:165–167.

    Article  CAS  PubMed  Google Scholar 

  3. Bitsch J, Bitsch C. The segmental organization of the head region in Chelicerata: a critical review of recent studies and hypotheses. Acta Zoologica (Stockholm) 2007; 88:317–335.

    Article  Google Scholar 

  4. Scholtz G, Edgecombe GD. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 2006; 216:395–415.

    Article  PubMed  Google Scholar 

  5. Cartwright P, Dick M, Buss LW. HOM/Hox type homeoboxes in the chelicerate Limulus polyphemus. Mol Phyl Evol 1993; 2:185–192.

    Article  CAS  Google Scholar 

  6. Telford MJ, Thomas RH. Expression of homeobox genes shows chelicerate arthropods retain their deuterocerebral segment. Proc Natl Acad Sci USA 1998; 95:10671–10675.

    Article  CAS  PubMed  Google Scholar 

  7. Telford MJ, Thomas RH. Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 1998; 208:591–594.

    Article  CAS  PubMed  Google Scholar 

  8. Telford MJ. Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5. Curr Biol 2000; 10:349–253.

    Article  CAS  PubMed  Google Scholar 

  9. Damen WGM, Hausdorf M, Seyfarth E-A et al. A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci USA 1998; 95:10665–10670.

    Article  CAS  PubMed  Google Scholar 

  10. Abzhanov A, Popadic A, Kaufman TC. Chelicerate Hox genes and the homology of arthropod segments. Evol Dev 1999; 1:77–89.

    Article  CAS  PubMed  Google Scholar 

  11. Damen WGM, Tautz D. A HOX class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-gene-like fashion. Dev Genes Evol 1998; 208:586–590.

    Article  CAS  PubMed  Google Scholar 

  12. Damen WGM, Janssen R, Prpic N-M. Pair rule gene orthologs in spider segmentation. Evol Dev 2005; 7:618–628.

    Article  PubMed  Google Scholar 

  13. Schwager EE, Schoppmeier M, Pechmann M et al. Duplicated Hox genes in the spider Cupiennius salei. Front Zool 2007; 4:10.

    Article  PubMed  CAS  Google Scholar 

  14. Manuel M, Jager M, Murienne J et al. Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 2006; 216:481–491.

    Article  PubMed  Google Scholar 

  15. Jager M, Murienne J, Clabaut C et al. Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. Nature 2006; 441:506–508.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes CL, Kaufman TC. Hox genes and the evolution of the arthropod body plan. Evol Dev 2002; 4:459–499.

    Article  CAS  PubMed  Google Scholar 

  17. Hughes CL, Kaufman TC. Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 2002; 19:1225–1238.

    Google Scholar 

  18. Janssen R, Damen WGM. The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 2006; 216:451–465.

    Article  CAS  PubMed  Google Scholar 

  19. Damen WGM. fushi tarazu: A Hox gene changes its role. BioEssays 2002; 24:992–995.

    Article  CAS  PubMed  Google Scholar 

  20. Mittmann B, Scholtz G. Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 2003; 213:9–17.

    PubMed  Google Scholar 

  21. Harzsch S, Wildt M, Battelle B et al. Immunohistochemical localization of neurotransmitters in the nervous system of larval Limulus polyphemus (Chelicerata, Xiphosura): evidence for a conserved protocerebral architecture in Euarthropoda. Arthropod Struct Dev 2005; 34:327–342.

    Article  CAS  Google Scholar 

  22. Viallanes MH. Etudes histologiques et organologiques sur les centres nerveux et les organs de sens des animaux articules. Ann Sci Nat Serv VII Zool 1893; 14:405–456.

    Google Scholar 

  23. Goodrich ES. On the relation of the arthropod head to the annelid prostomium. Q J Microsc Sci 1897; 40:147–268.

    Google Scholar 

  24. Dunlop JA, Arango CP. Pycnogonid affinities: a review. Journal of Zoology, Systematics and Evolutionary Research 2005; 43:8–21.

    Article  Google Scholar 

  25. Mallatt J, Giribet G. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol 2006; 40:772–794.

    Article  CAS  PubMed  Google Scholar 

  26. Maxmen A, Browne WE, Martindale MQ et al. Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 2005; 437:1144–1148.

    Article  CAS  PubMed  Google Scholar 

  27. Budd GE. A palaeontological solution to the arthropod head problem. Nature 2002; 417:271–275.

    Article  CAS  PubMed  Google Scholar 

  28. Budd GE, Telford MJ. Along came a sea spider. Nature 2005;437:1099–1102.

    Article  CAS  PubMed  Google Scholar 

  29. Weygoldt P. Ontogeny of the arachnid central nervous system. In: Barth FG, ed. Neurobiology of Arachnids. Heidelberg Springer Verlag 1985:20–37.

    Google Scholar 

  30. Averof M, Patel NH. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 1997; 388:682–686.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Damen, W.G.M. (2010). Hox Genes and the Body Plans of Chelicerates and Pycnogonids. In: Deutsch, J.S. (eds) Hox Genes. Advances in Experimental Medicine and Biology, vol 689. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6673-5_9

Download citation

Publish with us

Policies and ethics