Skip to main content

Are the Deuterostome Posterior Hox Genes a Fast-Evolving Class?

  • Chapter
Book cover Hox Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 689))

Abstract

There has been a great deal of interest in analysing the molecular evolution of the Hox cluster using both bioinformatic and experimental approaches. The posterior Hox genes have been of particular interest to both groups of biologists for a number of reasons: they appear to be associated with the evolution of a number of morphological novelties; the protostomes appear to be have lost a highly-conserved and functionally important amino acid motif (the hexapeptide motif ) from their posterior Hox genes; and deuterostome posterior Hox genes seem to be evolving more quickly than all other Hox genes. In this chapter I will discuss the last of these points.

The idea that Deuterostome posterior Hox genes were evolving more quickly than other Hox genes was first suggested by David Ferrier and colleagues.1 In this chapter, I start by introducing the posterior Hox genes—their distribution among the animal phyla and the likely sequence of duplications that led to this distribution. I then introduce the idea of ‘deuterostome posterior flexibility’1 and examine this hypothesis in light of more recent phylogenetic and genomic work on the Hox cluster. Finally, I discuss some new approaches that could be used to test directly for differential rates of evolution among Hox genes and to assess what might underlie these differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrier DEK, Minguillon C, Holland PWH et al. The amphioxus hox cluster: deuterostome posterior flexibility and hox14. Evol Dev 2000; 2(5):284–293.

    Article  CAS  PubMed  Google Scholar 

  2. Peterson KJ, Butterfield NJ. Origin of the eumetazoa: testing ecological predictions of molecular clocks against the proterozoic fossil record. Proc Natl Acad Sci USA 2005; 102(27):9547–9552.

    Article  CAS  PubMed  Google Scholar 

  3. Aguinaldo AM, Turbeville JM, Linford LS et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 1997; 387(6632):489–493.

    Article  CAS  PubMed  Google Scholar 

  4. Balavoine G, de Rosa R, Adoutte A. Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol 2002; 24(3):366–373.

    Article  CAS  PubMed  Google Scholar 

  5. Cook CE, Jimenez E, Akam M et al. The hox gene complement of acoel flatworms, a basal bilaterian clade. Evol Dev 2004; 6(3):154–163.

    Article  CAS  PubMed  Google Scholar 

  6. Ryan JF, Mazza ME, Pang K et al. Pre-bilaterian origins of the hox cluster and the hox code: evidence from the sea anemone, nematostella vectensis. PLoS One 2007; 2:e153.

    Article  CAS  Google Scholar 

  7. Kamm K, Schierwater B, Jakob W et al. Axial patterning and diversification in the cnidaria predate the hox system. Curr Biol 2006; 16(9):920–926.

    Article  CAS  PubMed  Google Scholar 

  8. Finnerty JR, Martindale MQ. Ancient origins of axial patterning genes: hox genes and ParaHox genes in the cnidaria. Evol Dev 1999; 1(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  9. Finnerty JR, Martindale MQ. Homeoboxes in sea anemones (cnidaria; anthozoa): a PCR-based survey of nematostella vectensis and metridium senile. Biol Bull 1997; 193(1):62–76.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrier DEK, Holland PWH. Ancient origin of the hox gene cluster. Nat Rev Gen 2001; 2(1):33–38.

    Article  CAS  Google Scholar 

  11. Cameron RA, Rowen L, Nesbitt R et al. Unusual gene order and organization of the sea urchin hox cluster. J Exp Zoolog B Mol Dev Evol 2006; 306(1):45–58.

    Article  CAS  Google Scholar 

  12. de Rosa R, Grenier JK, Andreeva T et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 1999; 399(6738):772–776.

    Article  CAS  PubMed  Google Scholar 

  13. Matus D, Halanych KM, Martindale MQ. The hox gene complement of a pelagic chaetognath, flaccisagitta enflata. Integ Comp Biol 2007; 47:854–864.

    Article  CAS  Google Scholar 

  14. Peterson KJ. Isolation of hox and parahox genes in the hemichordate ptychodera flava and the evolution of deuterostome hox genes. Mol Phylogenet Evol 2004; 31(3):1208–1215.

    Article  CAS  PubMed  Google Scholar 

  15. Aronowicz J, Lowe CJ. Hox gene expression in the hemichordate saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integ Comp Biol 2006; 46:890–901.

    Article  CAS  Google Scholar 

  16. Kmita-Cunisse M, Loosli F, Bierne J et al. Homeobox genes in the ribbonworm lineus sanguineus: evolutionary implications. Proc Natl Acad Sci USA 1998; 95(6):3030–3035.

    Article  CAS  PubMed  Google Scholar 

  17. Nogi T, Watanabe K. Position-specific and noncolinear expression of the planarian posterior (abdominal-B-like) gene. Dev Growth Differ 2001; 43(2):177–184.

    Article  CAS  PubMed  Google Scholar 

  18. Callaerts P, Lee PN, Hartmann B et al. HOX genes in the sepiolid squid euprymna scolopes: implications for the evolution of complex body plans. Proc Natl Acad Sci USA 2002; 99(4):2088–2093.

    Article  CAS  PubMed  Google Scholar 

  19. Akam M. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 1989; 57(3):347–349.

    Article  CAS  PubMed  Google Scholar 

  20. Grenier JK, Garber TL, Warren R et al. Evolution of the entire arthropod hox gene set predated the origin and radiation of the onychophoran/arthropod clade. Curr Biol 1997; 7(8):547–553.

    Article  CAS  PubMed  Google Scholar 

  21. Van Auken K, Weaver DC, Edgar LG et al. Caenorhabditis elegans embryonic axial patterning requires two recently discovered posterior-group hox genes. Proc Natl Acad Sci USA 2000; 97(9):4499–4503.

    Article  PubMed  Google Scholar 

  22. Holland LZ, Albalat R, Azumi K et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 2008; 18(7):1100–1111.

    Article  CAS  PubMed  Google Scholar 

  23. Seo HC, Edvardsen RB, Maeland AD et al. Hox cluster disintegration with persistent anteroposterior order of expression in oikopleura dioica. Nature 2004; 431(7004):67–71.

    Article  CAS  PubMed  Google Scholar 

  24. Duboule D, Boncinelli E, DeRobertis E et al. An update of mouse and human HOX gene nomenclature. Genomics 1990; 7(3):458–459.

    Article  CAS  PubMed  Google Scholar 

  25. Fritzsch G, Bohme MU, Thorndyke M et al. PCR survey of xenoturbella bocki hox genes. J Exp Zoolog B Mol Dev Evol 2008; 310(3):278–284.

    Article  CAS  Google Scholar 

  26. Papillon D, Perez Y, Fasano L et al. Hox gene survey in the chaetognath spadella cephaloptera: evolutionary implications. Dev Genes Evol 2003; 213(3):142–148.

    CAS  PubMed  Google Scholar 

  27. Aboobaker A. Hox gene evolution in nematodes: novelty conserved. Curr Opin Genet Dev 2003; 13(6):593–598.

    Article  CAS  PubMed  Google Scholar 

  28. Aboobaker AA, Blaxter ML. Hox gene loss during dynamic evolution of the nematode cluster. Curr Biol 2003; 13(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  29. Wang BB, Muller-Immergluck MM, Austin J et al. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell 1993; 74(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrier DEK. Evolution of hox gene clusters. In: Papageorgiou S, ed. Hox Gene Expression. New York: Springer, 2007:53–67.

    Chapter  Google Scholar 

  31. Amemiya CT, Prohaska SJ, Hill-Force A et al. The amphioxus hox cluster: characterization, comparative genomics and evolution. J Exp Zoolog B Mol Dev Evol 2008; 310(5):465–477.

    Article  CAS  Google Scholar 

  32. Minguillon C, Gardenyes J, Serra E et al. No more than 14: the end of the amphioxus hox cluster. Int J Biol Sci 2005; 1(1):19–23.

    CAS  PubMed  Google Scholar 

  33. Swalla BJ, Smith AB. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philos Trans R Soc Lond B Biol Sci 2008; 363(1496):1557–1568.

    Article  PubMed  Google Scholar 

  34. Lemons D, McGinnis W. Genomic evolution of hox gene clusters. Science 2006; 313(5795):1918–1922.

    Article  CAS  PubMed  Google Scholar 

  35. Amores A, Force A, Yan YL et al. Zebrafish hox clusters and vertebrate genome evolution. Science 1998; 282(5394):1711–1714.

    Article  CAS  PubMed  Google Scholar 

  36. Chourrout D, Delsuc F, Chourrout P et al. Minimal ProtoHox cluster inferred from bilaterian and cnidarian hox complements. Nature 2006; 442(7103):684–687.

    Article  CAS  PubMed  Google Scholar 

  37. Ferrier DE. Hox genes: did the vertebrate ancestor have a Hox14? Curr Biol 2004; 14(5):R210–211.

    Article  CAS  PubMed  Google Scholar 

  38. Finnerty JR, Martindale MQ. The evolution of the hox cluster: insights from outgroups. Curr Opin Genet Dev 1998; 8(6):681–687.

    Article  CAS  PubMed  Google Scholar 

  39. Garcia-Fernandez J. Hox, ParaHox, ProtoHox: facts and guesses. Heredity 2005; 94(2):145–152.

    Article  CAS  PubMed  Google Scholar 

  40. Kourakis MJ, Martindale MQ. Combined-method phylogenetic analysis of hox and paraHox genes of the metazoa. J Exp Zool 2000; 288(2):175–191.

    Article  CAS  PubMed  Google Scholar 

  41. Ogishima S, Tanaka H. Missing link in the evolution of hox clusters. Gene 2007; 387(1–2):21–30.

    Article  CAS  PubMed  Google Scholar 

  42. Powers TP, Amemiya CT. Evidence for a hox14 paralog group in vertebrates. Curr Biol 2004; 14(5):R183–184.

    Article  CAS  PubMed  Google Scholar 

  43. Kuraku S, Takio Y, Tamura K et al. Noncanonical role of hox14 revealed by its expression patterns in lamprey and shark. Proc Natl Acad Sci USA 2008; 105(18):6679–6683.

    Article  CAS  PubMed  Google Scholar 

  44. Lanfear R, Bromham L. Statistical tests between competing hypotheses of hox cluster evolution. Syst Biol 2008; 57(5):1–11.

    Article  CAS  Google Scholar 

  45. Schubert M, Escriva H, Xavier-Neto J et al. Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol 2006; 21(5):269–277.

    Article  PubMed  Google Scholar 

  46. Peterson KJ, McPeek MA, Evans DAD. Tempo and mode of early animal evolution: inferences from rocks, hox and molecular clocks. Paleobiology 2005; 31(2):36–55.

    Article  Google Scholar 

  47. Pascual-Anaya J, D’Aniello S, Garcia-Fernandez J. Unexpectedly large number of conserved noncoding regions within the ancestral chordate hox cluster. Dev Genes Evol 2008; 218(11–12):591–7. Epub 2008 Sep 13.

    Article  CAS  PubMed  Google Scholar 

  48. Santini S, Boore JL, Meyer A. Evolutionary conservation of regulatory elements in vertebrate hox gene clusters. Genome Res 2003; 13(6A):1111–1122.

    Article  CAS  PubMed  Google Scholar 

  49. Prince VE, Pickett FB. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 2002; 3(11):827–837.

    Article  CAS  PubMed  Google Scholar 

  50. Mazet F, Shimeld SM. Gene duplication and divergence in the early evolution of vertebrates. Curr Opin Genet Dev 2002; 12(4):393–396.

    Article  CAS  PubMed  Google Scholar 

  51. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000; 290(5494):1151–1155.

    Article  CAS  PubMed  Google Scholar 

  52. Force A, Lynch M, Pickett FB et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999; 151(4):1531–1545.

    CAS  PubMed  Google Scholar 

  53. Kondrashov FA, Rogozin IB, Wolf YI et al. Selection in the evolution of gene duplications. Genome Biol 2002; 3(2):RESEARCH0008.

    Google Scholar 

  54. Kondrashov FA, Kondrashov AS. Role of selection in fixation of gene duplications. J Theor Biol 2006; 239(2):141–151.

    Article  CAS  PubMed  Google Scholar 

  55. Van de Peer Y, Taylor JS, Braasch I et al. The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes. J Mol Evol 2001; 53(4–5):436–446.

    Article  PubMed  CAS  Google Scholar 

  56. Taylor JS, Raes J. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 2004; 38:615–643.

    Article  CAS  PubMed  Google Scholar 

  57. Lynch VJ, Roth JJ, Wagner GP. Adaptive evolution of hox-gene homeodomains after cluster duplications. BMC Evol Biol 2006; 6:86.

    Article  PubMed  CAS  Google Scholar 

  58. McClintock JM, Carlson R, Mann DM et al. Consequences of hox gene duplication in the vertebrates: an investigation of the zebrafish hox paralogue group 1 genes. Development 2001; 128(13):2471–2484.

    CAS  PubMed  Google Scholar 

  59. Holland PWH, GarciaFernandez J. Hox genes and chordate evolution. Dev Biol 1996; 173(2):382–395.

    Article  CAS  PubMed  Google Scholar 

  60. Wagner GP, Amemiya C, Ruddle F. Hox cluster duplications and the opportunity for evolutionary novelties. Proc Natl Acad Sci USA 2003; 100(25):14603–14606.

    Article  CAS  PubMed  Google Scholar 

  61. Budd GE. Does evolution in body patterning genes drive morphological change—or vice versa? Bioessays 1999; 21(4):326–332.

    Article  Google Scholar 

  62. Hughes CL, Kaufman TC. Hox genes and the evolution of the arthropod body plan. Evol Dev 2002; 4(6):459–499.

    Article  CAS  PubMed  Google Scholar 

  63. Gellon G, McGinnis W. Shaping animal body plans in development and evolution by modulation of hox expression patterns. Bioessays 1998; 20(2):116–125.

    Article  CAS  PubMed  Google Scholar 

  64. Burke AC, Nelson CE, Morgan BA et al. Hox genes and the evolution of vertebrate axial morphology. Development 1995; 121(2):333–346.

    CAS  PubMed  Google Scholar 

  65. Zakany J, Duboule D. The role of hox genes during vertebrate limb development. Curr Opin Genet Dev 2007; 17(4):359–366.

    Article  CAS  PubMed  Google Scholar 

  66. Zakany J, Kmita M, Duboule D. A dual role for hox genes in limb anterior-posterior asymmetry. Science 2004; 304(5677):1669–1672.

    Article  CAS  PubMed  Google Scholar 

  67. Davis AP, Witte DP, Hsieh-Li HM et al. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 1995; 375(6534):791–795.

    Article  CAS  PubMed  Google Scholar 

  68. Deschamps J. Developmental biology. Hox genes in the limb: a play in two acts. Science 2004; 304(5677):1610–1611.

    Article  CAS  PubMed  Google Scholar 

  69. Galis F, Kundrat M, Metz JA. Hox genes, digit identities and the theropod/bird transition. J Exp Zoolog B Mol Dev Evol 2005; 304(3):198–205.

    Article  CAS  Google Scholar 

  70. Gerhart J, Lowe C, Kirschner M. Hemichordates and the origin of chordates. Curr Opin Genet Dev 2005; 15(4):461–467.

    Article  CAS  PubMed  Google Scholar 

  71. Smith AB. Deuterostomes in a twist: the origins of a radical new body plan. Evol Dev 2008; 10(4):493–503.

    Article  PubMed  Google Scholar 

  72. Shen WF, Montgomery JC, Rozenfeld S et al. AbdB-like hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol Cell Biol 1997; 17(11):6448–6458.

    CAS  PubMed  Google Scholar 

  73. Campos PR, de Oliveira VM, Wagner GP et al. Gene phylogenies and protein-protein interactions: possible artifacts resulting from shared protein interaction partners. J Theor Biol 2004; 231(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  74. Welch JJ, Waxman D. Calculating independent contrasts for the comparative study of substitution rates. J Theor Biol 2008; 251(4):667–678.

    Article  PubMed  Google Scholar 

  75. Pagel M, Venditti C, Meade A. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 2006; 314(5796):119–121.

    Article  CAS  PubMed  Google Scholar 

  76. Xiang QY, Zhang WH, Ricklefs RE et al. Regional differences in rates of plant speciation and molecular evolution: a comparison between eastern Asia and eastern North America. Evolution 2004; 58(10):2175–2184.

    CAS  PubMed  Google Scholar 

  77. Bromham L, Woolfit M, Lee MS et al. Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution Int J Org Evolution 2002; 56(10):1921–1930.

    Google Scholar 

  78. Davies TJ, Savolainen V. Neutral theory, phylogenies and the relationship between phenotypic change and evolutionary rates. Evolution Int J Org Evolution 2006; 60(3):476–483.

    CAS  Google Scholar 

  79. Goh CS, Bogan AA, Joachimiak M et al. Co-evolution of proteins with their interaction partners. J Mol Biol 2000; 299(2):283–293.

    Article  CAS  PubMed  Google Scholar 

  80. Chiu CH, Amemiya C, Dewar K et al. Molecular evolution of the HoxA cluster in the three major gnathostome lineages. Proc Natl Acad Sci USA 2002; 99(8):5492–5497.

    Article  CAS  PubMed  Google Scholar 

  81. Chiu CH, Dewar K, Wagner GP et al. Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. Genome Res 2004; 14(1):11–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lanfear, R. (2010). Are the Deuterostome Posterior Hox Genes a Fast-Evolving Class?. In: Deutsch, J.S. (eds) Hox Genes. Advances in Experimental Medicine and Biology, vol 689. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6673-5_8

Download citation

Publish with us

Policies and ethics