Skip to main content

Megakaryocyte-Bone Cell Interactions

  • Conference paper
  • First Online:
Osteoimmunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 658))

Abstract

Emerging data show that megakaryocytes (MKs) play a role in the replication and development of bone cells. Both in vivo and in vitro evidence now show that MKs can have significant effects on cells of the osteoclast (OC) and osteoblast (OB) lineage, with obvious manifestations on bone phenotype, and probable significance for human pathology.

There are currently four mouse models in which increases in MK number lead to a specific bone pathology of markedly increased bone volume. While these models all achieve megakaryocytosis by different mechanisms, the resultant osteosclerotic phenotype observed is consistent across all models.

In vitro data suggest that MKs play a role in OC and OB proliferation and differentiation. While MKs express receptor activator of nuclear factor kappa B ligand (RANKL), a prerequisite for osteoclastogenesis, they also express many factors known to inhibit OC development, and co-cultures of MKs with OCs show a significant decrease in osteoclastogenesis. In contrast, MKs express several proteins with a known critical role in osteoblastogenesis and bone formation, and co-cultures of these two lineages result in up to a six-fold increase in OB proliferation and alterations in OB differentiation.

This research demonstrates the complex regulatory interactions at play between MKs and bone cells, and opens up potential targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BM:

bone marrow

BMD:

bone marrow density

BMP:

bone morphogenetic protein

BMSC:

bone marrow stromal cells

GM-CSF:

granulocyte/macrophage colony-stimulating factor

IFN-γ:

interferon gamma

IL:

interleukin

MK:

megakaryocyte

OB:

osteoblast

OC:

osteoclast

OCIL:

osteoclast inhibitory lectin

OPG:

osteoprotegerin

PDGF:

platelet-derived growth factor

Pt-vWD:

platelet-type von Willenbrand disease

RANKL:

receptor activator of nuclear factor kappa B ligand

TGF-β:

transforming growth factor-β

TPO:

thrombopoietin

TRAP:

tartrate resistant acid phosphatase

VEGF:

vascular endothelial growth factor

References

  1. Frey, B.M., Rafii, S., Crystal, R.G. et al. (1998). Adenovirus long-term expression of thrombopoietin in vivo: a new model for myeloproliferative syndrome and osteomyelofibrosis. Schweiz Med Wochenschr, 128, 1587–1592

    PubMed  Google Scholar 

  2. Frey, B.M., Rafii, S., Teterson, M. et al. (1998). Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: insights into the pathophysiology of osteomyelofibrosis. J Immunol, 160, 691–699

    PubMed  Google Scholar 

  3. Yan, X.Q., Lacey, D., Fletcher, F. et al. (1995). Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood, 86, 4025–4033

    PubMed  Google Scholar 

  4. Yan, X.Q., Lacey, D., Hill, D. et al. (1996). A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood, 88, 402–409

    PubMed  Google Scholar 

  5. Villeval, J.L., Cohen-Solal, K., Tulliez, M. et al. (1997). High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood, 90, 4369–4383

    PubMed  Google Scholar 

  6. Shivdasani, R.A., Rosenblatt, M.F., Zucker-Franklin, D. et al. (1995). Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell, 81, 695–704

    Article  PubMed  Google Scholar 

  7. Shivdasani, R.A., Fujiwara, Y., McDevitt, M.A. et al. (1997). A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J, 16, 3965–3973

    Article  PubMed  Google Scholar 

  8. Kacena, M.A., Shivdasani, R.A., Wilson, K. et al. (2004). Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res, 19, 652–660

    PubMed  Google Scholar 

  9. Suva, L.J., Hartman, E., Dilley, J.D. et al. (2008). Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease. Am J Pathol, 172, 430–439

    Article  PubMed  Google Scholar 

  10. Vannucchi, A.M., Bianchi, L., Cellai, C. et al. (2002). Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood, 100, 1123–1132

    Article  PubMed  Google Scholar 

  11. Wickenhauser, C., Hillienhof, A., Jungheim, K. et al. (1995). Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia, 9, 310–315

    PubMed  Google Scholar 

  12. Chagraoui, H., Komura, E., Tulliez, M. et al. (2002). Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood, 100, 3495–3503

    Article  PubMed  Google Scholar 

  13. Kakumitsu, H., Kamezaki, K., Shimoda, K. et al. (2005). Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res, 29, 761–769

    Article  PubMed  Google Scholar 

  14. Bord, S., Frith, E., Ireland, D.C. et al. (2005). Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL. Bone, 36, 812–819

    Article  PubMed  Google Scholar 

  15. Bord, S., Frith, E., Ireland, D.C. et al. (2004). Synthesis of osteoprotegerin and RANKL by megakaryocytes is modulated by oestrogen. Br J Haematol, 126, 244–251

    Article  PubMed  Google Scholar 

  16. Bord, S., Ireland, D.C., Beavan, S.R. et al. (2003). The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone, 32, 136–141

    Article  PubMed  Google Scholar 

  17. Pearse, R.N., Sordillo, E.M., Yaccoby, S. et al. (2001). Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA, 98, 11581–11586

    Article  PubMed  Google Scholar 

  18. Chagraoui, H., Sabri, S., Capron, C. et al. (2003). Expression of osteoprotegerin mRNA and protein in murine megakaryocytes. Exp Hematol, 31, 1081–1088

    Article  PubMed  Google Scholar 

  19. Kartsogiannis, V., Zhou, H., Horwood, N.J. et al. (1999). Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone, 25, 525–534

    Article  PubMed  Google Scholar 

  20. Chagraoui, H., Tulliez, M., Smayra, T. et al. (2003). Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood, 101, 2983–2989

    PubMed  Google Scholar 

  21. Wakikawa, T., Shioi, A., Hino, M. et al. (1997). Thrombopoietin inhibits in vitro osteoclastogenesis from murine bone marrow cells. Endocrinology, 138, 4160–4166

    Article  PubMed  Google Scholar 

  22. Orkin, S.H. (1992). GATA-binding transcription factors in hematopoietic cells. Blood, 80, 575–581

    PubMed  Google Scholar 

  23. Vyas, P., Ault, K., Jackson, C.W. et al. (1999). Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood, 93, 2867–2875

    PubMed  Google Scholar 

  24. Vannucchi, A.M., Bianchi, L., Paoletti, F. et al. (2005). A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood, 105, 3493–3501

    Article  PubMed  Google Scholar 

  25. Andrews, N.C., Erdjument-Bromage, H., Davidson, M.B. et al. (1993). Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature, 362, 722–728

    Article  PubMed  Google Scholar 

  26. Andrews, N.C., Kotkow, K.J., Ney, P.A. et al. (1993). The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc Natl Acad Sci U S A, 90, 11488–11492

    PubMed  Google Scholar 

  27. Kacena, M.A., Gundberg, C.M., Nelson, T. et al. (2005). Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype. Bone, 36, 215–223

    Article  PubMed  Google Scholar 

  28. Shivdasani, R.A., Fielder, P., Keller, G.A. et al. (1997). Regulation of the serum concentration of thrombopoietin in thrombocytopenic NF-E2 knockout mice. Blood, 90, 1821–1827

    PubMed  Google Scholar 

  29. Kong, Y.Y., Yoshida, H., Sarosi, I. et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397, 315–323

    PubMed  Google Scholar 

  30. Manabe, N., Kawaguchi, H., Chikuda, H. et al. (2001). Connection between B lymphocyte and osteoclast differentiation pathways. J Immunol, 167, 2625–2631

    PubMed  Google Scholar 

  31. Kacena, M.A., Nelson, T., Clough, M.E. et al. (2006). Megakaryocyte-mediated inhibition of osteoclast development. Bone, 39, 991–999

    PubMed  Google Scholar 

  32. Jiang, S., Levine, J.D., Fu, Y. et al. (1994). Cytokine production by primary bone marrow megakaryocytes. Blood, 84, 4151–4156

    PubMed  Google Scholar 

  33. Soslau, G., Morgan, D.A., Jaffe, J.S. et al. (1997). Cytokine mRNA expression in human platelets and a megakaryocytic cell line and cytokine modulation of platelet function. Cytokine, 9, 405–411

    Article  PubMed  Google Scholar 

  34. Wickenhauser, C., Lorenzen, J., Thiele, J. et al. (1995). Secretion of cytokines (interleukins-1 alpha, -3, and -6 and granulocyte-macrophage colony-stimulating factor) by normal human bone marrow megakaryocytes. Blood, 85, 685–691

    PubMed  Google Scholar 

  35. Beeton, C.A., Bord, S., Ireland, D. et al. (2006). Osteoclast formation and bone resorption are inhibited by megakaryocytes. Bone, 39, 985–990

    Article  PubMed  Google Scholar 

  36. Miao, D., Murant, S., Scutt, N. et al. (2004). Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng, 10, 807–817

    Article  PubMed  Google Scholar 

  37. Schmitz, B., Thiele, J., Otto, F. et al. (1996). Interactions between endogeneous lectins and fucosylated oligosaccharides in megakaryocyte-dependent fibroblast growth of the normal bone marrow. Leukemia, 10, 1604–1614

    PubMed  Google Scholar 

  38. Schmitz, B., Thiele, J., Witte, O. et al. (1995). Influence of cytokines (IL-1 alpha, IL-3, IL-11, GM-CSF) on megakaryocyte-fibroblast interactions in normal human bone marrow. Eur J Haematol, 55, 24–32

    PubMed  Google Scholar 

  39. Schmitz, B., Wickenhauser, C., Thiele, J. et al. (1999). Megakaryocyte induced fibroblast proliferation is enhanced by costimulation with IL-6/IL-3 and dependent on secretory and adhesion events. Leuk Res, 23, 723–729

    Article  PubMed  Google Scholar 

  40. Schmitz, B., Thiele, J., Otto, F. et al. (1998). Evidence for integrin receptor involvement in megakaryocyte-fibroblast interaction: a possible pathomechanism for the evolution of myelofibrosis. J Cell Physiol, 176, 445–455

    Article  PubMed  Google Scholar 

  41. Gao, Y.H., Shinki, T., Yuasa, T. et al. (1998). Potential role of cbfa1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochem Biophys Res Commun, 252, 697–702

    Article  PubMed  Google Scholar 

  42. Hofbauer, L.C., Dunstan, C.R., Spelsberg, T.C. et al. (1998). Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun, 250, 776–781

    Article  PubMed  Google Scholar 

  43. Hofbauer, L.C., & Heufelder, A.E. (1998). Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. Eur J Endocrinol, 139, 152–154

    Article  PubMed  Google Scholar 

  44. Vidal, O.N., Sjogren, K., Eriksson, B.I. et al. (1998). Osteoprotegerin mRNA is increased by interleukin-1 alpha in the human osteosarcoma cell line MG-63 and in human osteoblast-like cells. Biochem Biophys Res Commun, 248, 696–700

    Article  PubMed  Google Scholar 

  45. Udagawa, N., Takahashi, N., Jimi, E. et al. (1999). Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone, 25, 517–523

    Article  PubMed  Google Scholar 

  46. Nakano, K., Okada, Y., Saito, K. et al. (2004). Induction of RANKL expression and osteoclast maturation by the binding of fibroblast growth factor 2 to heparan sulfate proteoglycan on rheumatoid synovial fibroblasts. Arthritis Rheum, 50, 2450–2458

    Article  PubMed  Google Scholar 

  47. Mitani, M., Miura, Y., Saura, R. et al. (2005). Estrogen specifically stimulates expression and production of osteoprotegerin from rheumatoid synovial fibroblasts. Int J Mol Med, 15, 827–832

    CAS  PubMed  Google Scholar 

  48. Wei, X., Zhang, X., Zuscik, M.J. et al. (2005). Fibroblasts express RANKL and support osteoclastogenesis in a COX-2-dependent manner after stimulation with titanium particles. J Bone Miner Res, 20, 1136–1148

    Article  PubMed  Google Scholar 

  49. Kacena, M.A., & Horowitz, M.C. (2006). The role of megakaryocytes in skeletal homeostasis and rheumatoid arthritis. Curr Opin Rheumatol, 18, 405–410

    Article  PubMed  Google Scholar 

  50. Thiede, M.A., Smock, S.L., Petersen, D.N. et al. (1994). Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology, 135, 929–937

    Article  PubMed  Google Scholar 

  51. Kelm, R.J., Jr., Hair, G.A., Mann, K.G. et al. (1992). Characterization of human osteoblast and megakaryocyte-derived osteonectin (SPARC). Blood, 80, 3112–3119

    PubMed  Google Scholar 

  52. Breton-Gorius, J., Clezardin, P., Guichard, J. et al. (1992). Localization of platelet osteonectin at the internal face of the alpha-granule membranes in platelets and megakaryocytes. Blood, 79, 936–941

    PubMed  Google Scholar 

  53. Chenu, C., & Delmas, P.D. (1992). Platelets contribute to circulating levels of bone sialoprotein in human. J Bone Miner Res, 7, 47–54

    PubMed  Google Scholar 

  54. Frank, J.D., Balena, R., Masarachia, P. et al. (1993). The effects of three different demineralization agents on osteopontin localization in adult rat bone using immunohistochemistry. Histochemistry, 99, 295–301

    Article  PubMed  Google Scholar 

  55. Sipe, J.B., Zhang, J., Waits, C. et al. (2004). Localization of bone morphogenetic proteins (BMPs)-2, -4, and -6 within megakaryocytes and platelets. Bone, 35, 1316–1322

    Article  PubMed  Google Scholar 

  56. Ciovacco, W.A., Goldberg, C.G., Taylor, A.F. et al. (2009). The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone, 44, 80–86

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Amanda Taylor for her critical review of this study. This work was supported in part by NIH/NIAMS grant AR055269 (MAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. Kacena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kacena, M.A., Ciovacco, W.A. (2009). Megakaryocyte-Bone Cell Interactions. In: Choi, Y. (eds) Osteoimmunology. Advances in Experimental Medicine and Biology, vol 658. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1050-9_4

Download citation

Publish with us

Policies and ethics