Skip to main content

Molecular Breeding: Maximizing the Exploitation of Genetic Diversity

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

The use of molecular markers is gradually expanding from the field of scientific genetic analysis towards the implementation and application in breeding programs. Applications of DNA markers in breeding are based on the knowledge of the relation between genotypic and phenotypic variation. This overview of the field of molecular breeding describes current and future methods for establishing these relations through the combined use of modern DNA technologies and the laws of inheritance. The modern molecular breeder has the opportunity to control an increasing amount of traits in the breeding process through efficient application of DNA markers. Traits with different level of complexity require different approaches for discovery and molecular control. These approaches include control of genotypes and traits, at the level of linked markers, haplotypes, genes and gene alleles. In order to fully exploit the potential of molecular breeding as well as the potential of available germplasm resources, the selection methods in breeding will have to be adapted, towards the integrated use of genetic knowledge based on DNA markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson J-R, Lübberstedt T (2003) Functinal markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  Google Scholar 

  • Aranzana M-J, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide Association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60:0531–0539

    CAS  Google Scholar 

  • Bentsink L, Yuan K, Koornneef M, Vreugdenhil D (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor Appl Genet 106:1234–1243

    PubMed  CAS  Google Scholar 

  • Borewitz J-O, Liang D, Ploiffe D, Chang H-S, Zhu T, Weigel D, Berry C-C, Winzler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  CAS  Google Scholar 

  • Buckler E-S, Thornsberry J-M (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  PubMed  CAS  Google Scholar 

  • Buntjer J-B, Sorensen A-P, Peleman J-D (2005) Haplotype diversity: The link between statistical and biological associations. Trends Plant Sci 10:466–471

    Article  PubMed  CAS  Google Scholar 

  • Caldwell K-S, Russel J, Langridge P, Powel W (2006) Extreme population-dependent linkage disequilibrioum detected in an inbreeding plant species, hordeum vulgare. Genetics 172:557–567

    Article  PubMed  CAS  Google Scholar 

  • Chan E-Y (2005) Advances in sequencing technology. Mutat Res 573:13–40, www.sciencedirect.com.

    PubMed  CAS  Google Scholar 

  • Chen X, Sullivan P-F (2003) Single nucleotide polymorphism genotyping: Biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96

    Article  PubMed  CAS  Google Scholar 

  • Chetelata R-T, Meglicb V, Cisnerosa P (2000) A genetic map of tomato based on BC1 lycopersicon esculentum x solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154:857–867

    Google Scholar 

  • Cooper M, DeLacy I-H (1994) Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theor Appl Genet 88:561–572

    Article  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    Article  PubMed  CAS  Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller J-I, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    PubMed  CAS  Google Scholar 

  • Dekkers J-C, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  PubMed  CAS  Google Scholar 

  • Droc G, Ruiz M, Larmande P, Pereira A, Piffanelli P, Morel J-B, Dievart A, Courtois B, Guiderdoni E, Perin C, OryGenes DB (2006) A database for rice reverse genetics. Nucleic Acids Res 1:34

    Google Scholar 

  • El-Din El-Assal S, Alonso-Blanco C, Peeters A-J, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele at CRY2. Nat Genet 29:435–440

    Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1996) Less than additive epistatic interactions of QTL in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Flint J, Valder W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev genet 6:271–285

    Article  PubMed  CAS  Google Scholar 

  • Flint-Garcia S-A, Thuillet A-C, Yu J, Pressoir G, Romero S-M, Mitchell S-E, Doebley J, Kresovich S, Goodman M-M, Buckler E-S (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Clint NT, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K-B, Tanksley S-D (2000) fw2.2: A quanititative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Frisch M, Bohn M, Melchinger A-E (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Gebhardt C, Bellin D, Henselewski H, Lehmann W, Schwarzfischer J, Valkonen J-P-T (2006) Marker-assisted combination of major genes for pathogen resistance in potato. Theor Appl Genet 112:1458–1464

    Article  PubMed  CAS  Google Scholar 

  • Hagenblad J, Tang C, Molitor J, Werner J, Zhao K, Zheng H, Marjoram P, Weigel D, Nordborg M (2004) Haplotype structure and phenotypic associations in the chromosomal regions surrounding two Arabidopsis thaliana flowering time loci. Genetics 168:1627–1638

    Article  PubMed  CAS  Google Scholar 

  • Harbison S-T, Yamamoto A-H, Fanara J-J, Norga K-K, Mackay T-F (2004) Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics. 166:1807–1823 http://www.arabidopsis.org; http://www.cropdesign.com/general.php; http://www.fao.org/BIOTECH/docs/Barone.pdf; http://www.lemnatec.com/; http://www.pollenplus.de/pollenplus_62.php/

    Google Scholar 

  • Huang N, Stebbins G-L, Rodriguez R-L (1992) Classification and evolution of A-amylase genes in plants. Proc Natl Acad Sci USA 89:7526–7530

    Article  PubMed  CAS  Google Scholar 

  • Jansen J-P-A (1996) Aphid resistance in composites. International application published under the patent cooperation treaty (PCT) No. WO 97/46080.

    Google Scholar 

  • Jansen J, Verbakel H, Peleman J, van Hintum Th-J-L (2006) A note on the measurement of genetic diversity within genebank accessions of lettuce (Lactuca sativa L.) using AFLP markers, Theor Appl Genet 112:554–561

    Article  CAS  Google Scholar 

  • Koornneef M, Stam P (2001) Changing paradigms in plant breeding. Plant Physiol 125:156–159

    Article  PubMed  CAS  Google Scholar 

  • Kraakman A-T-W, Niks R-E, Van den Berg P-M-M-M, Stam P, Van Eeuwijk F-A (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture Archeology. Science 288:1602–1603

    Article  PubMed  CAS  Google Scholar 

  • Li Z-K, Fu B-Y, Gao Y-M, Xu J-L, Ali J, Lafitte H-R, Jiang Y-Z, Domingo Rey J, Vijayakumar C-H-M, Maghirang R, Zheng T-Q, Zhu L-H (2005) Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol 59:33–52

    Article  PubMed  CAS  Google Scholar 

  • Li L, Strahwald J, Hofferbert H-R, Lubeck J, Tacke E, Junghans H, Wunder J, Gebhardt C (2005) DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics. 170:813–821

    Article  PubMed  CAS  Google Scholar 

  • Liu J, van Eck J, Cong B, Tanksley S-D (2002) A new class of regulatory genes underlying the cause of pear-shaped fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed  CAS  Google Scholar 

  • Lübberstedt T, Melchinger A-E, Dussle C, Vuylsteke M, Kuiper M (2000) Relationship among early European maize inbreds: IV genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci 40:783–791

    Article  Google Scholar 

  • Mackay T-F-C (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Mackay T-F-C (2004) The genetic architecture of quantitative traits: lessons from Drosophila. Curr Opin Genet Dev 14:253–257

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Michael M, Altman W-E, Attiya S, Bader J-S, Bemben L-A, Berka J, Braverman M-S, Chen Y-J, Chen Z, Dewell S-B, Du L, Fierro J-M, Gomes X-V, Godwin B-C, He W, Helgesen S, Ho C-H, Irzyk G-P, Jando S-C, Alenquer M-L-I, Jarvie T-P, Jirage K-B, Kim J-B,Knight J-R, Lanza J-R, Leamon J-H, Lefkowitz S-M, Lei M, Li J, Lohman K-L, Lu H, Makhijani V-B, McDade K-E, McKenna M-P, Myers E-W, Nickerson E, Nobile J-R, Plant R, Puc B-P, Ronan M-T, Roth G-T, Sarkis G-J, Simons J-F, Simpson J-W, Srinivasan M, Tartaro K-R, Tomasz A, Vogt K-A, Volkmer G-A, Wang S-H, Wang Y, Weiner M-P, Yu P, Begley R-F, Rothberg J-M (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • McCarty D-R, Settles A-M, Suzuki M, Tan B-C, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch K-E, Hannah L-C (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61

    Article  PubMed  CAS  Google Scholar 

  • McKay B, Slaney J-K (2002) Advances in artificial intelligence, 15th Australian joint conference on artificial intelligence, Canberra, Australia, December 2–6, 2002, Proceedings Springer 2002

    Google Scholar 

  • McKay R-I, Abbass H-A (2003) Artificial life: an introduction. Intern J Computat Intellig and Appl 3:143–144

    Article  Google Scholar 

  • Michelmore R-W, Paran I, Kesseli R-V (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotech 14:214–219

    Article  PubMed  CAS  Google Scholar 

  • Mott R, Talbot C-J, Turri M-G, Collins A-C, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci USA 97:12649–12654

    Article  PubMed  Google Scholar 

  • Niu T (2004) Algorithms for inferring haplotypes. Genet Epidemiol 27:334–347

    Article  PubMed  Google Scholar 

  • Norga K-K, Gurganus M-C, Dilda C-L, Yamamoto A, Lyman R-F, Patel P-H, Rubin G-M, Hoskins R-A, Mackay T-F, Bellen H-J (2003) Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development. Curr Biol 19;13:1388–1396

    Article  CAS  Google Scholar 

  • Olsen K-M, Halldorsdottir S-S, Stinchcombe J-R, Weinig C, Schmitt J, Purugganan M-D (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: Beyond the QTL. Trends Genet 19:303–306

    Article  PubMed  CAS  Google Scholar 

  • Paterson A-H, Lander E-S, Hewitt J-D, Peterson S, Lincoln S-E et al (1988) Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Peleman J-D, Rouppe van der Voort J (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  PubMed  CAS  Google Scholar 

  • Peleman J-D, Wye C.L, Zethof J, Sorensen A-P, Verbakel H, van Oeveren J, Gerats T, Rouppe van der Voort J (2005) Quantitative trait locus (QTL) Isogenic recombinant analysis: a method for High-resolution mapping of QTL within a single population. Genetics 171:1341–1352

    Article  PubMed  CAS  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108:1591–1601

    Article  CAS  Google Scholar 

  • Pritchard J-K, Stephens M, Rosenberg N-A, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:1070–181

    Article  Google Scholar 

  • Rafalski A, Morgante M (2004) Corn and humans: Recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111

    Article  PubMed  CAS  Google Scholar 

  • Rannala B, Slatkin M (2000) Methods for multipoint disease mapping using linkage disequilibrium. Genet Epidemiol 9:S71–77

    Article  Google Scholar 

  • Reif J-C, Melchinger A-E, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1–7

    Article  Google Scholar 

  • Reyes-Valdes M-H (2000) A model for Marker-based selection in gene introgression breeding programs. Crop Sci 40:91–98

    Article  Google Scholar 

  • Roldán-Ruiz I, Calsyn E, Gilliland T-J, Coll R, van Eijk M-J-T, De Loose M (2000) Estimating genetic conformity between related ryegrass (Lolium) varieties. 2. AFLP characterization. Mol Breed 6:593–602

    Article  Google Scholar 

  • Rouppe van der Voort J, van der Vossen E, Bakker E, Overmars H, van Zandvoort P, Hutten R, Klein Lankhorst R, Bakker J (2000) Two additive QTLs conferring broad-spectrum resistance in potato to Globodera pallida are localized on resistance gene clusters. Theor Appl Genet 101:1122–1130

    Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S et al (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48:601–613

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie A-R (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  PubMed  CAS  Google Scholar 

  • Septiningish E-M, Trijatmiko K-R, Moeljoparwiro S, McCouch.S-R (2003) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O rufipogon Theor Appl Genet 107:1433–1441

    Google Scholar 

  • Servin B, Martin O-C, Mézard M, Hospital, F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Mitra R-D, Varma C, Church G-M (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–344

    Article  PubMed  CAS  Google Scholar 

  • Sicard D, Woo S-S, Arroyo-Garcia R, Ochoa O, Nguyen D, Korol A, Nevo E, Michelmore R (1999) Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp. Theor Appl Genet 99:405–418

    Article  CAS  Google Scholar 

  • Smid K-J, Tórjék O, Meyer R, Schmuths H, Hoffman M-H, Altmann T (2006) Evidence for large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphis markers. Theor Appl Genet 112:1104–1114

    Google Scholar 

  • Stuurman J, Kuhlemeier C (2005) Stable two-element control of dTph1 transposition in mutator strains of Petunia by an inactive ACT1 introgression from a wild species. Plant J 41:945–55

    Article  PubMed  CAS  Google Scholar 

  • Syed N-H, Chen Z-J (2004) Molecular marker genotypes, heterozygosity and genetic interaction explain heterosis in Arabidopsis thaliana. Heredity 94:295–304

    Article  CAS  Google Scholar 

  • Syvanen A-C (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    Article  PubMed  CAS  Google Scholar 

  • Syvanen A-C (2005) Toward genome-wide SNP genotyping. Nat Genet 37:10

    Article  CAS  Google Scholar 

  • Szalma S-J, Buckler E-S, Snook M-E, McMullen M-D (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Tanksley S-D, Grandillo S, Fulton T-M, Zamir, D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Tanksley S-D, McCouch S-R (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanksley S-D, Nelson J-C (1996) Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley S-D, Young N-D, Paterson A-H, Bonierbale M-W (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264

    Article  CAS  Google Scholar 

  • The Complex Trait Consortium (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Google Scholar 

  • The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:27

    Google Scholar 

  • Thornsberry J-M, Goodman M-M, Doebley J, Kresovich S, Nielsen D, Buckler E-S (2001) IV, Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Thumma B-R, Nolan M-F, Evans R, Moran G-F (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus. Genet 171:1257–1265

    Article  CAS  Google Scholar 

  • van Eeuwijk F-A, Malosetti M, Yin X, Struik P-C, Stam P (2005) Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Aust J Agric Res 56:883–894

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M , Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke M, Kuiper M, Stam P (2000) Chromosomal regions involved in hybrid performance and heterosis: thir AFLP ®-based identification and practical use in prediction models. Heredity 85:208–218

    Article  PubMed  CAS  Google Scholar 

  • Watson & Crick (1953) Molecular structure of nucelic acids. Nature 4356:737–738

    Article  Google Scholar 

  • Williams J, Kubelik A, Livak K, Rafalski J, Tingey S (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Wilson L-M, Whitt S-R, Ibanez-Carranza A-M, Goodman M-M, Rocheford T-R, Buckler E-S (2004) Dissection of maize kernel composition and starch production by candidate gene association, Plant Cell 16:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Witcombe J-R, Hash C-T (2000) Resistance gene deployment strategies in cereal hybrids using maker-assisted selection: gene pyramiding, three-way hybrids and synthetic parent populations. Euphytica 112:175–186

    Article  Google Scholar 

  • Young N-D (1999) A cautiously optimistic vision for marker-assisted breeding. Mol breed 5:505–510

    Article  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:993–989

    Article  CAS  Google Scholar 

  • Zöllner S, Pritchard J-K (2005) Coalescent-based association mapping and fine mapping of complex trait loci. Genetics 169:1071–1092

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sørensen, A.P., Stuurman, J., Voort, J.R.v.d., Peleman, J. (2007). Molecular Breeding: Maximizing the Exploitation of Genetic Diversity. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6295-7_3

Download citation

Publish with us

Policies and ethics