Skip to main content

Genomics-Assisted Crop Improvement: An Overview

  • Chapter
Book cover Genomics-Assisted Crop Improvement

Abstract

In recent years, a truly impressive number of advances in genetics and genomics have greatly enhanced our understanding of structural and functional aspects of plant genomes but at the same time have challenged us with many compelling avenues of investigation. The complete genome sequences of Arabidopsis, rice, sorghum and poplar as well as an enormous number of plant expressed sequence tags (ESTs) have become available. In the next few years, the entire genomes or at least gene space will likely be sequenced for most major crops. However, improved varieties, not sequences per se, contribute to improved economic return to the farmer. Functional genomics and systems biology research are facilitating the identification of gene networks that are involved in controlling genetic variation for agronomically valuable traits in elite breeding populations. Furthermore, combining the new knowledge from genomic research with conventional breeding methods is essential for enhancing response to selection, hence crop improvement. Superior varieties can result from the discovery of novel genetic variation, improved selection techniques, and/or the identification of genotypes with improved attributes due to superior combinations of alleles at multiple loci assembled through marker-assisted selection. Although it is clear that genomics research has great potential to revolutionize the discipline of plant breeding, high costs invested in/associated with genomics research currently limit the implementation of genomics-assisted crop improvement, especially for inbreeding and/or minor crops. A critical assessment of the status and availability of genomic resources and genomics research in model and crop plants, and devising the strategies and approaches for effectively exploiting genomics research for crop improvement have been presented in two volumes of the book. while Volume 1, entitled “Genomics approaches and platforms”, compiles chapters providing readers with an overview of the available genomics tools, approaches and platforms, Volume 2, entitled “Genomics applications in crop improvement”, presents a timely and critical overview on applications of genomics in crop improvement. An overview on the highlights of the chapters of these two volumes has been presented in the present introductory chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Deynze AV, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Biotechnology 18:630–634

    Article  CAS  Google Scholar 

  • Crosbie TM, Eathington SR, Johnson GR, Edwards M, Reiter R, Stark S, Mohanty RG, Oyervides M, Buehler RE, Walker AK et al (2006) Plant breeding: past, present, and future. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer international symposium. Blackwell Publishing, Ames, Iowa, pp 3–50

    Google Scholar 

  • Goff SA, Ricke D, Lang TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) Draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetics and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2004) Cereal genomics: an overview. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Press, Dordrecht, The Netherlands, pp 639–643

    Google Scholar 

  • Hammer GL, Chapman S, Oosterom E, Podlich DW (2005) Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems. Aust J Agric Res 56:947–960

    Article  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Genet 6:95–108

    CAS  Google Scholar 

  • Jain SM, Brar DS, Ahloowalia BS (2002) Molecular techniques in crop improvement. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 433–444

    Google Scholar 

  • Jank B, Rath J, Spok A (2005) Genetically modified organisms and the EU. Trends Biotechnol 23:222–224

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Google Scholar 

  • Kalaitzandonakes N (2004) The potential impacts of the biosafety protocol on agricultural commodity trade. IPC Technology Issue Brief, Washington DC

    Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314

    Article  PubMed  Google Scholar 

  • Koebner RMD (2004) Marker-assisted selection in the cereals: the dream and the reality. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 199–252

    Google Scholar 

  • Kuhn E (2001) From library screening to microarray technology: strategies to determine gene expression profiles and to identify differentially regulated genes in plants. Ann Bot 87:139–155

    Article  CAS  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nature Rev Cancer 3:253–266

    Article  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  Google Scholar 

  • Moreau L, Charcosset A, Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137:111–118

    Article  CAS  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14: 214–219

    Article  PubMed  CAS  Google Scholar 

  • Openshaw S, Frascaroli E (1997) QTL detection and marker-assisted selection for complex traits in maize. Proceedings of the 52nd Annual Corn and Sorghum research conference american seed trade association, Washington DC, pp 44–53

    Google Scholar 

  • Phillips RL, Vasil IK (2001) DNA-based markers in plants. Kluwer Academic Publishers, The Netherlands, pp 497–503

    Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Article  Google Scholar 

  • Rafalski JA (2002) Applications of single nucleotide polymorphism in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    Article  PubMed  CAS  Google Scholar 

  • Rudd S, Schoof H, Klaus M (2005) PlantMarkers-a database of predicted molecular markers from plants. Nucleic Acids Res 33:D628–D632

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, Rota ML, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    Google Scholar 

  • Sreenivasulu N, Varshney RK, Kavikishore PV, Weschke W (2004) Tolerance to abioitic stress- a functional genomics approach. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 483–514

    Google Scholar 

  • Stein N, Graner A (2004) Map-based gene isolation in cereal genomes In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 331–360

    Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Tsaftaris AS, Polidoros AN, Koumproglou R, Tani A, Kovacevic N, Abatzizou E (2005) Epigenetic mechanisms in plants and their implications in plant breeding. In: Tuberosa R, Phillips RL, Gale MA (eds). In the wake of the Double Helix: From the Green Revolution to the gene revolution, Avenuemedia, Bologna, Italy, pp 157–172

    Google Scholar 

  • Tuberosa R, Gill BS, Salvi S (2002) Cereal genomics: ushering in a brave new world. Plant Mol Biol 48:445–449

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005b) Genomic-Assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Sigmund R, Borner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A (2005c) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Vij S, Gupta V, Kumar D, Vydianathan R, Raghuvanshi S, Khurana P, Khurana JP, Tyagi AK (2006) Decoding the rice genome. Bioessays 28:421–432

    Article  PubMed  CAS  Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) Biotechnology and ecology: the ecological risks and benefits of genetically engineered plants. Science 290:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wang G, Li SG, Wong KSG, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. indica ). Science 296:79–92

    Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Varshney, R.K., Tuberosa, R. (2007). Genomics-Assisted Crop Improvement: An Overview. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6295-7_1

Download citation

Publish with us

Policies and ethics