Skip to main content

Checkpoint Blockade and Combinatorial Immunotherapies

  • Chapter
  • 1121 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hao,Y., Legrand,N., & Freitas,A.A. (2006) The clone size of peripheral CD8 T cells is regulated by TCR promiscuity. J.Exp.Med.

    Google Scholar 

  2. Watanabe,N., Gavrieli,M., Sedy,J.R., Yang,J., Fallarino,F., Loftin,S.K., Hurchla,M.A., Zimmerman,N., Sim,J., Zang,X., Murphy,T.L., Russell,J.H., Allison,J.P., & Murphy,K.M. (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat.Immunol., 4, 670–679.

    PubMed  CAS  Google Scholar 

  3. Marrogi,A.J., Munshi,A., Merogi,A.J., Ohadike,Y., El Habashi,A., Marrogi,O.L., & Freeman,S.M. (1997) Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int.J.Cancer, 74, 492–501.

    PubMed  CAS  Google Scholar 

  4. Zhang,L., Conejo-Garcia,J.R., Katsaros,D., Gimotty,P.A., Massobrio,M., Regnani,G., Makrigiannakis,A., Gray,H., Schlienger,K., Liebman,M.N., Rubin,S.C., & Coukos,G. (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N.Engl.J.Med., 348, 203–213.

    PubMed  CAS  Google Scholar 

  5. Nakano,O., Sato,M., Naito,Y., Suzuki,K., Orikasa,S., Aizawa,M., Suzuki,Y., Shintaku,I., Nagura,H., & Ohtani,H. (2001) Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res., 61, 5132–5136.

    PubMed  CAS  Google Scholar 

  6. Vesalainen,S., Lipponen,P., Talja,M., & Syrjanen,K. (1994) Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur.J.Cancer, 30A, 1797–1803.

    PubMed  CAS  Google Scholar 

  7. Naito,Y., Saito,K., Shiiba,K., Ohuchi,A., Saigenji,K., Nagura,H., & Ohtani,H. (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res., 58, 3491–3494.

    PubMed  CAS  Google Scholar 

  8. Mortarini,R., Piris,A., Maurichi,A., Molla,A., Bersani,I., Bono,A., Bartoli,C., Santinami,M., Lombardo,C., Ravagnani,F., Cascinelli,N., Parmiani,G., & Anichini,A. (2003) Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res., 63, 2535–2545.

    PubMed  CAS  Google Scholar 

  9. Gabrilovich,D. (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat.Rev.Immunol., 4, 941–952.

    PubMed  CAS  Google Scholar 

  10. Furumoto,K., Soares,L., Engleman,E.G., & Merad,M. (2004) Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J.Clin.Invest, 113, 774–783.

    PubMed  CAS  Google Scholar 

  11. Young,J.W. & Inaba,K. (1996) Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J.Exp.Med., 183, 7–11.

    PubMed  CAS  Google Scholar 

  12. Dranoff,G., Jaffee,E., Lazenby,A., Golumbek,P., Levitsky,H., Brose,K., Jackson,V., Hamada,H., Pardoll,D., & Mulligan,R.C. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc.Natl.Acad.Sci.U.S.A, 90, 3539–3543.

    PubMed  CAS  Google Scholar 

  13. Finn,O.J. (2003) Cancer vaccines: between the idea and the reality. Nat.Rev.Immunol., 3, 630–641.

    PubMed  CAS  Google Scholar 

  14. Rosenberg,S.A., Yang,J.C., & Restifo,N.P. (2004) Cancer immunotherapy: moving beyond current vaccines. Nat.Med., 10, 909–915.

    PubMed  CAS  Google Scholar 

  15. Rosenberg,S.A., Sherry,R.M., Morton,K.E., Scharfman,W.J., Yang,J.C., Topalian,S.L., Royal,R.E., Kammula,U., Restifo,N.P., Hughes,M.S., Schwartzentruber,D., Berman,D.M., Schwarz,S.L., Ngo,L.T., Mavroukakis,S.A., White,D.E., & Steinberg,S.M. (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J.Immunol., 175, 6169–6176.

    PubMed  CAS  Google Scholar 

  16. Nishikawa,H., Qian,F., Tsuji,T., Ritter,G., Old,L.J., Gnjatic,S., & Odunsi,K. (2006) Influence of CD4+CD25+ regulatory T cells on low/high-avidity CD4+ T cells following peptide vaccination. J.Immunol., 176, 6340–6346.

    PubMed  CAS  Google Scholar 

  17. Dhodapkar,M.V., Steinman,R.M., Krasovsky,J., Munz,C., & Bhardwaj,N. (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J.Exp.Med., 193, 233–238.

    PubMed  CAS  Google Scholar 

  18. Chakraborty,N.G., Chattopadhyay,S., Mehrotra,S., Chhabra,A., & Mukherji,B. (2004) Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma. Hum.Immunol., 65, 794–802.

    PubMed  CAS  Google Scholar 

  19. Thompson,R.H., Gillett,M.D., Cheville,J.C., Lohse,C.M., Dong,H., Webster,W.S., Krejci,K.G., Lobo,J.R., Sengupta,S., Chen,L., Zincke,H., Blute,M.L., Strome,S.E., Leibovich,B.C., & Kwon,E.D. (2004) Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc.Natl.Acad.Sci.U.S.A, 101, 17174–17179.

    PubMed  CAS  Google Scholar 

  20. Blank,C., Brown,I., Peterson,A.C., Spiotto,M., Iwai,Y., Honjo,T., & Gajewski,T.F. (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res., 64, 1140–1145.

    PubMed  CAS  Google Scholar 

  21. Harding,F.A., McArthur,J.G., Gross,J.A., Raulet,D.H., & Allison,J.P. (1992) CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature, 356, 607–609.

    PubMed  CAS  Google Scholar 

  22. Linsley,P.S., Brady,W., Grosmaire,L., Aruffo,A., Damle,N.K., & Ledbetter,J.A. (1991) Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J.Exp.Med., 173, 721–730.

    PubMed  CAS  Google Scholar 

  23. Hathcock,K.S., Laszlo,G., Pucillo,C., Linsley,P., & Hodes,R.J. (1994) Comparative analysis of B7–1 and B7–2 costimulatory ligands: expression and function. J.Exp.Med., 180, 631–640.

    PubMed  CAS  Google Scholar 

  24. Lenschow,D.J. & Bluestone,J.A. (1993) T cell co-stimulation and in vivo tolerance. Curr.Opin.Immunol., 5, 747–752.

    PubMed  CAS  Google Scholar 

  25. Fallarino,F., Grohmann,U., Hwang,K.W., Orabona,C., Vacca,C., Bianchi,R., Belladonna,M.L., Fioretti,M.C., Alegre,M.L., & Puccetti,P. (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat.Immunol., 4, 1206–1212.

    PubMed  CAS  Google Scholar 

  26. Shahinian,A., Pfeffer,K., Lee,K.P., Kundig,T.M., Kishihara,K., Wakeham,A., Kawai,K., Ohashi,P.S., Thompson,C.B., & Mak,T.W. (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science, 261, 609–612.

    PubMed  CAS  Google Scholar 

  27. Borriello,F., Sethna,M.P., Boyd,S.D., Schweitzer,A.N., Tivol,E.A., Jacoby,D., Strom,T.B., Simpson,E.M., Freeman,G.J., & Sharpe,A.H. (1997) B7–1 and B7–2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity., 6, 303–313.

    PubMed  CAS  Google Scholar 

  28. Diehn,M., Alizadeh,A.A., Rando,O.J., Liu,C.L., Stankunas,K., Botstein,D., Crabtree,G.R., & Brown,P.O. (2002) Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc.Natl.Acad.Sci.U.S.A, 99, 11796–11801.

    PubMed  CAS  Google Scholar 

  29. Riley,J.L., Mao,M., Kobayashi,S., Biery,M., Burchard,J., Cavet,G., Gregson,B.P., June,C.H., & Linsley,P.S. (2002) Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc.Natl.Acad.Sci.U.S.A, 99, 11790–11795.

    PubMed  CAS  Google Scholar 

  30. Viola,A. & Lanzavecchia,A. (1996) T cell activation determined by T cell receptor number and tunable thresholds. Science, 273, 104–106.

    PubMed  CAS  Google Scholar 

  31. Waterhouse,P., Penninger,J.M., Timms,E., Wakeham,A., Shahinian,A., Lee,K.P., Thompson,C.B., Griesser,H., & Mak,T.W. (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 270, 985–988.

    PubMed  CAS  Google Scholar 

  32. Tivol,E.A., Borriello,F., Schweitzer,A.N., Lynch,W.P., Bluestone,J.A., & Sharpe,A.H. (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity., 3, 541–547.

    PubMed  CAS  Google Scholar 

  33. Chambers,C.A., Sullivan,T.J., & Allison,J.P. (1997) Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity., 7, 885–895.

    PubMed  CAS  Google Scholar 

  34. Blair,P.J., Riley,J.L., Levine,B.L., Lee,K.P., Craighead,N., Francomano,T., Perfetto,S.J., Gray,G.S., Carreno,B.M., & June,C.H. (1998) CTLA-4 ligation delivers a unique signal to resting human CD4 T cells that inhibits interleukin-2 secretion but allows Bcl-X(L) induction. J.Immunol., 160, 12–15.

    PubMed  CAS  Google Scholar 

  35. Brunner,M.C., Chambers,C.A., Chan,F.K., Hanke,J., Winoto,A., & Allison,J.P. (1999) CTLA-4-Mediated inhibition of early events of T cell proliferation. J.Immunol., 162, 5813–5820.

    PubMed  CAS  Google Scholar 

  36. Egen,J.G. & Allison,J.P. (2002) Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity., 16, 23–35.

    PubMed  CAS  Google Scholar 

  37. Shiratori,T., Miyatake,S., Ohno,H., Nakaseko,C., Isono,K., Bonifacino,J.S., & Saito,T. (1997) Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity., 6, 583–589.

    PubMed  CAS  Google Scholar 

  38. van der Merwe,P.A. & Davis,S.J. (2003) Molecular interactions mediating T cell antigen recognition. Annu.Rev.Immunol., 21, 659–684.

    PubMed  Google Scholar 

  39. Stamper,C.C., Zhang,Y., Tobin,J.F., Erbe,D.V., Ikemizu,S., Davis,S.J., Stahl,M.L., Seehra,J., Somers,W.S., & Mosyak,L. (2001) Crystal structure of the B7–1/CTLA-4 complex that inhibits human immune responses. Nature, 410, 608–611.

    PubMed  CAS  Google Scholar 

  40. Greene,J.L., Leytze,G.M., Emswiler,J., Peach,R., Bajorath,J., Cosand,W., & Linsley,P.S. (1996) Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J.Biol.Chem., 271, 26762–26771.

    PubMed  CAS  Google Scholar 

  41. Nakaseko,C., Miyatake,S., Iida,T., Hara,S., Abe,R., Ohno,H., Saito,Y., & Saito,T. (1999) Cytotoxic T lymphocyte antigen 4 (CTLA-4) engagement delivers an inhibitory signal through the membrane-proximal region in the absence of the tyrosine motif in the cytoplasmic tail. J.Exp.Med., 190, 765–774.

    PubMed  CAS  Google Scholar 

  42. Carreno,B.M., Bennett,F., Chau,T.A., Ling,V., Luxenberg,D., Jussif,J., Baroja,M.L., & Madrenas,J. (2000) CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J.Immunol., 165, 1352–1356.

    PubMed  CAS  Google Scholar 

  43. Masteller,E.L., Chuang,E., Mullen,A.C., Reiner,S.L., & Thompson,C.B. (2000) Structural analysis of CTLA-4 function in vivo. J.Immunol., 164, 5319–5327.

    PubMed  CAS  Google Scholar 

  44. Chikuma,S., Abbas,A.K., & Bluestone,J.A. (2005) B7-independent inhibition of T cells by CTLA-4. J.Immunol., 175, 177–181.

    PubMed  CAS  Google Scholar 

  45. Takahashi,S., Kataoka,H., Hara,S., Yokosuka,T., Takase,K., Yamasaki,S., Kobayashi,W., Saito,Y., & Saito,T. (2005) In vivo overexpression of CTLA-4 suppresses lymphoproliferative diseases and thymic negative selection. Eur.J.Immunol., 35, 399–407.

    PubMed  CAS  Google Scholar 

  46. Vijayakrishnan,L., Slavik,J.M., Illes,Z., Greenwald,R.J., Rainbow,D., Greve,B., Peterson,L.B., Hafler,D.A., Freeman,G.J., Sharpe,A.H., Wicker,L.S., & Kuchroo,V.K. (2004) An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity., 20, 563–575.

    PubMed  CAS  Google Scholar 

  47. Chambers,C.A., Sullivan,T.J., Truong,T., & Allison,J.P. (1998) Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur.J.Immunol., 28, 3137–3143.

    PubMed  CAS  Google Scholar 

  48. Chambers,C.A., Kuhns,M.S., & Allison,J.P. (1999) Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4(+) T cell responses. Proc.Natl.Acad.Sci.U.S.A, 96, 8603–8608.

    PubMed  CAS  Google Scholar 

  49. Luhder,F., Chambers,C., Allison,J.P., Benoist,C., & Mathis,D. (2000) Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc.Natl.Acad.Sci.U.S.A, 97, 12204–12209.

    PubMed  CAS  Google Scholar 

  50. Greenwald,R.J., Boussiotis,V.A., Lorsbach,R.B., Abbas,A.K., & Sharpe,A.H. (2001) CTLA-4 regulates induction of anergy in vivo. Immunity., 14, 145–155.

    PubMed  CAS  Google Scholar 

  51. Probst,H.C., McCoy,K., Okazaki,T., Honjo,T., & van den,B.M. (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat.Immunol., 6, 280–286.

    PubMed  CAS  Google Scholar 

  52. Leach,D.R., Krummel,M.F., & Allison,J.P. (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271, 1734–1736.

    PubMed  CAS  Google Scholar 

  53. Yang,Y.F., Zou,J.P., Mu,J., Wijesuriya,R., Ono,S., Walunas,T., Bluestone,J., Fujiwara,H., & Hamaoka,T. (1997) Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res., 57, 4036–4041.

    PubMed  CAS  Google Scholar 

  54. Kwon,E.D., Hurwitz,A.A., Foster,B.A., Madias,C., Feldhaus,A.L., Greenberg,N.M., Burg,M.B., & Allison,J.P. (1997) Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc.Natl.Acad.Sci.U.S.A, 94, 8099–8103.

    PubMed  CAS  Google Scholar 

  55. Shrikant,P., Khoruts,A., & Mescher,M.F. (1999) CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity., 11, 483–493.

    PubMed  CAS  Google Scholar 

  56. Sotomayor,E.M., Borrello,I., Tubb,E., Allison,J.P., & Levitsky,H.I. (1999) In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc.Natl.Acad.Sci.U.S.A, 96, 11476–11481.

    PubMed  CAS  Google Scholar 

  57. van Elsas,A., Hurwitz,A.A., & Allison,J.P. (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J.Exp.Med., 190, 355–366.

    PubMed  Google Scholar 

  58. Hurwitz,A.A., Yu,T.F., Leach,D.R., & Allison,J.P. (1998) CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc.Natl.Acad.Sci.U.S.A, 95, 10067–10071.

    PubMed  CAS  Google Scholar 

  59. Hurwitz,A.A., Foster,B.A., Kwon,E.D., Truong,T., Choi,E.M., Greenberg,N.M., Burg,M.B., & Allison,J.P. (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res., 60, 2444–2448.

    PubMed  CAS  Google Scholar 

  60. Gregor,P.D., Wolchok,J.D., Ferrone,C.R., Buchinshky,H., Guevara-Patino,J.A., Perales,M.A., Mortazavi,F., Bacich,D., Heston,W., Latouche,J.B., Sadelain,M., Allison,J.P., Scher,H.I., & Houghton,A.N. (2004) CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine, 22, 1700–1708.

    PubMed  CAS  Google Scholar 

  61. Demaria,S., Kawashima,N., Yang,A.M., Devitt,M.L., Babb,J.S., Allison,J.P., & Formenti,S.C. (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin.Cancer Res., 11, 728–734.

    PubMed  CAS  Google Scholar 

  62. Mokyr,M.B., Kalinichenko,T., Gorelik,L., & Bluestone,J.A. (1998) Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res., 58, 5301–5304.

    PubMed  CAS  Google Scholar 

  63. Davila,E., Kennedy,R., & Celis,E. (2003) Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res., 63, 3281–3288.

    PubMed  CAS  Google Scholar 

  64. Ko,K., Yamazaki,S., Nakamura,K., Nishioka,T., Hirota,K., Yamaguchi,T., Shimizu,J., Nomura,T., Chiba,T., & Sakaguchi,S. (2005) Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J.Exp.Med., 202, 885–891.

    PubMed  CAS  Google Scholar 

  65. Sutmuller,R.P., van Duivenvoorde,L.M., van Elsas,A., Schumacher,T.N., Wildenberg,M.E., Allison,J.P., Toes,R.E., Offringa,R., & Melief,C.J. (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J.Exp.Med., 194, 823–832.

    PubMed  CAS  Google Scholar 

  66. Woo,E.Y., Chu,C.S., Goletz,T.J., Schlienger,K., Yeh,H., Coukos,G., Rubin,S.C., Kaiser,L.R., & June,C.H. (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res., 61, 4766–4772.

    PubMed  CAS  Google Scholar 

  67. Woo,E.Y., Yeh,H., Chu,C.S., Schlienger,K., Carroll,R.G., Riley,J.L., Kaiser,L.R., & June,C.H. (2002) Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J.Immunol., 168, 4272–4276.

    PubMed  CAS  Google Scholar 

  68. Liyanage,U.K., Moore,T.T., Joo,H.G., Tanaka,Y., Herrmann,V., Doherty,G., Drebin,J.A., Strasberg,S.M., Eberlein,T.J., Goedegebuure,P.S., & Linehan,D.C. (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J.Immunol., 169, 2756–2761.

    PubMed  CAS  Google Scholar 

  69. Curiel,T.J., Coukos,G., Zou,L., Alvarez,X., Cheng,P., Mottram,P., Evdemon-Hogan,M., Conejo-Garcia,J.R., Zhang,L., Burow,M., Zhu,Y., Wei,S., Kryczek,I., Daniel,B., Gordon,A., Myers,L., Lackner,A., Disis,M.L., Knutson,K.L., Chen,L., & Zou,W. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat.Med., 10, 942–949.

    PubMed  CAS  Google Scholar 

  70. Viguier,M., Lemaitre,F., Verola,O., Cho,M.S., Gorochov,G., Dubertret,L., Bachelez,H., Kourilsky,P., & Ferradini,L. (2004) Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J.Immunol., 173, 1444–1453.

    PubMed  CAS  Google Scholar 

  71. Groux,H., O’Garra,A., Bigler,M., Rouleau,M., Antonenko,S., de Vries,J.E., & Roncarolo,M.G. (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature, 389, 737–742.

    PubMed  CAS  Google Scholar 

  72. Levings,M.K., Sangregorio,R., Galbiati,F., Squadrone,S., de Waal,M.R., & Roncarolo,M.G. (2001a) IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J.Immunol., 166, 5530–5539.

    CAS  Google Scholar 

  73. Weiner,H.L. (2001) Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol.Rev., 182, 207–214.

    PubMed  CAS  Google Scholar 

  74. Walker,M.R., Kasprowicz,D.J., Gersuk,V.H., Benard,A., Van Landeghen,M., Buckner,J.H., & Ziegler,S.F. (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+. J.Clin.Invest, 112, 1437–1443.

    PubMed  CAS  Google Scholar 

  75. Chen,W., Jin,W., Hardegen,N., Lei,K.J., Li,L., Marinos,N., McGrady,G., & Wahl,S.M. (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J.Exp.Med., 198, 1875–1886.

    PubMed  CAS  Google Scholar 

  76. Apostolou,I. & von Boehmer,H. (2004) In vivo instruction of suppressor commitment in naive T cells. J.Exp.Med., 199, 1401–1408.

    PubMed  CAS  Google Scholar 

  77. Kretschmer,K., Apostolou,I., Hawiger,D., Khazaie,K., Nussenzweig,M.C., & von Boehmer,H. (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat.Immunol., 6, 1219–1227.

    PubMed  CAS  Google Scholar 

  78. Curotto de Lafaille,M.A., Lino,A.C., Kutchukhidze,N., & Lafaille,J.J. (2004) CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J.Immunol., 173, 7259–7268.

    PubMed  CAS  Google Scholar 

  79. Zhou,G., Drake,C.G., & Levitsky,H.I. (2005) Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood.

    Google Scholar 

  80. Gilliet,M. & Liu,Y.J. (2002) Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J.Exp.Med., 195, 695–704.

    PubMed  CAS  Google Scholar 

  81. Zheng,S.G., Wang,J.H., Koss,M.N., Quismorio,F., Jr., Gray,J.D., & Horwitz,D.A. (2004) CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J.Immunol., 172, 1531–1539.

    PubMed  CAS  Google Scholar 

  82. Chang,C.C., Ciubotariu,R., Manavalan,J.S., Yuan,J., Colovai,A.I., Piazza,F., Lederman,S., Colonna,M., Cortesini,R., Dalla-Favera,R., & Suciu-Foca,N. (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat.Immunol., 3, 237–243.

    PubMed  CAS  Google Scholar 

  83. Noble,A., Giorgini,A., & Leggat,J.A. (2006) Cytokine-induced IL-10-secreting CD8 T cells represent a phenotypically distinct suppressor T-cell lineage. Blood, 107, 4475–4483.

    PubMed  CAS  Google Scholar 

  84. Shimizu,J., Yamazaki,S., & Sakaguchi,S. (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J.Immunol., 163, 5211–5218.

    PubMed  CAS  Google Scholar 

  85. Marshall,N.A., Christie,L.E., Munro,L.R., Culligan,D.J., Johnston,P.W., Barker,R.N., & Vickers,M.A. (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood, 103, 1755–1762.

    PubMed  CAS  Google Scholar 

  86. Alvaro,T., Lejeune,M., Salvado,M.T., Bosch,R., Garcia,J.F., Jaen,J., Banham,A.H., Roncador,G., Montalban,C., & Piris,M.A. (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin.Cancer Res., 11, 1467–1473.

    PubMed  Google Scholar 

  87. Dave,S.S., Wright,G., Tan,B., Rosenwald,A., Gascoyne,R.D., Chan,W.C., Fisher,R.I., Braziel,R.M., Rimsza,L.M., Grogan,T.M., Miller,T.P., LeBlanc,M., Greiner,T.C., Weisenburger,D.D., Lynch,J.C., Vose,J., Armitage,J.O., Smeland,E.B., Kvaloy,S., Holte,H., Delabie,J., Connors,J.M., Lansdorp,P.M., Ouyang,Q., Lister,T.A., Davies,A.J., Norton,A.J., Muller-Hermelink,H.K., Ott,G., Campo,E., Montserrat,E., Wilson,W.H., Jaffe,E.S., Simon,R., Yang,L., Powell,J., Zhao,H., Goldschmidt,N., Chiorazzi,M., & Staudt,L.M. (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N.Engl.J.Med., 351, 2159–2169.

    PubMed  CAS  Google Scholar 

  88. Furtado,G.C., Curotto de Lafaille,M.A., Kutchukhidze,N., & Lafaille,J.J. (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J.Exp.Med., 196, 851–857.

    PubMed  CAS  Google Scholar 

  89. Almeida,A.R., Legrand,N., Papiernik,M., & Freitas,A.A. (2002) Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J.Immunol., 169, 4850–4860.

    PubMed  Google Scholar 

  90. Malek,T.R. & Bayer,A.L. (2004) Tolerance, not immunity, crucially depends on IL-2. Nat.Rev.Immunol., 4, 665–674.

    PubMed  CAS  Google Scholar 

  91. Zhang,H., Chua,K.S., Guimond,M., Kapoor,V., Brown,M.V., Fleisher,T.A., Long,L.M., Bernstein,D., Hill,B.J., Douek,D.C., Berzofsky,J.A., Carter,C.S., Read,E.J., Helman,L.J., & Mackall,C.L. (2005) Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat.Med., 11, 1238–1243.

    PubMed  CAS  Google Scholar 

  92. Ahmadzadeh,M. & Rosenberg,S.A. (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood, 107, 2409–2414.

    PubMed  CAS  Google Scholar 

  93. Zou,W. (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat.Rev.Immunol., 6, 295–307.

    PubMed  CAS  Google Scholar 

  94. Zhou,G., Drake,C.G., & Levitsky,H.I. (2006) Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood, 107, 628–636.

    PubMed  CAS  Google Scholar 

  95. Yamazaki,S., Iyoda,T., Tarbell,K., Olson,K., Velinzon,K., Inaba,K., & Steinman,R.M. (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J.Exp.Med., 198, 235–247.

    PubMed  CAS  Google Scholar 

  96. Thornton,A.M. & Shevach,E.M. (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J.Immunol., 164, 183–190.

    PubMed  CAS  Google Scholar 

  97. Piccirillo,C.A., Letterio,J.J., Thornton,A.M., McHugh,R.S., Mamura,M., Mizuhara,H., & Shevach,E.M. (2002) CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J.Exp.Med., 196, 237–246.

    PubMed  CAS  Google Scholar 

  98. Stephens,L.A., Mottet,C., Mason,D., & Powrie,F. (2001) Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur.J.Immunol., 31, 1247–1254.

    PubMed  CAS  Google Scholar 

  99. Asseman,C., Mauze,S., Leach,M.W., Coffman,R.L., & Powrie,F. (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J.Exp.Med., 190, 995–1004.

    PubMed  CAS  Google Scholar 

  100. Suri-Payer,E. & Cantor,H. (2001) Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4(+)CD25(+) T cells. J.Autoimmun., 16, 115–123.

    PubMed  CAS  Google Scholar 

  101. Chen,M.L., Pittet,M.J., Gorelik,L., Flavell,R.A., Weissleder,R., von Boehmer,H., & Khazaie,K. (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc.Natl.Acad.Sci.U.S.A, 102, 419–424.

    PubMed  CAS  Google Scholar 

  102. Green,E.A., Gorelik,L., McGregor,C.M., Tran,E.H., & Flavell,R.A. (2003) CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc.Natl.Acad.Sci.U.S.A, 100, 10878–10883.

    PubMed  CAS  Google Scholar 

  103. Fahlen,L., Read,S., Gorelik,L., Hurst,S.D., Coffman,R.L., Flavell,R.A., & Powrie,F. (2005) T cells that cannot respond to TGF-beta escape control by CD4+CD25+ regulatory T cells. J.Exp.Med., 201, 737–746.

    PubMed  CAS  Google Scholar 

  104. Read,S., Malmstrom,V., & Powrie,F. (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J.Exp.Med., 192, 295–302.

    PubMed  CAS  Google Scholar 

  105. Takahashi,T., Tagami,T., Yamazaki,S., Uede,T., Shimizu,J., Sakaguchi,N., Mak,T.W., & Sakaguchi,S. (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J.Exp.Med., 192, 303–310.

    PubMed  CAS  Google Scholar 

  106. Bachmann,M.F., Kohler,G., Ecabert,B., Mak,T.W., & Kopf,M. (1999) Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J.Immunol., 163, 1128–1131.

    PubMed  CAS  Google Scholar 

  107. Kataoka,H., Takahashi,S., Takase,K., Yamasaki,S., Yokosuka,T., Koike,T., & Saito,T. (2005) CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int.Immunol., 17, 421–427.

    PubMed  CAS  Google Scholar 

  108. Tang,Q., Boden,E.K., Henriksen,K.J., Bour-Jordan,H., Bi,M., & Bluestone,J.A. (2004) Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur.J.Immunol., 34, 2996–3005.

    PubMed  CAS  Google Scholar 

  109. Quezada,S.A., Peggs,K.S., Curran,M.A., & Allison,J.P. (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J.Clin.Invest, 116, 1935–1945.

    PubMed  CAS  Google Scholar 

  110. Thornton,A.M. & Shevach,E.M. (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J.Exp.Med., 188, 287–296.

    PubMed  CAS  Google Scholar 

  111. Chai,J.G., Tsang,J.Y., Lechler,R., Simpson,E., Dyson,J., & Scott,D. (2002) CD4+CD25+ T cells as immunoregulatory T cells in vitro. Eur.J.Immunol., 32, 2365–2375.

    PubMed  CAS  Google Scholar 

  112. Levings,M.K., Sangregorio,R., & Roncarolo,M.G. (2001b) Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J.Exp.Med., 193, 1295–1302.

    CAS  Google Scholar 

  113. Annunziato,F., Cosmi,L., Liotta,F., Lazzeri,E., Manetti,R., Vanini,V., Romagnani,P., Maggi,E., & Romagnani,S. (2002) Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J.Exp.Med., 196, 379–387.

    PubMed  CAS  Google Scholar 

  114. Paust,S., Lu,L., McCarty,N., & Cantor,H. (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc.Natl.Acad.Sci.U.S.A, 101, 10398–10403.

    PubMed  CAS  Google Scholar 

  115. Taylor,P.A., Lees,C.J., Fournier,S., Allison,J.P., Sharpe,A.H., & Blazar,B.R. (2004) B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T-T interactions [corrections]. J.Immunol., 172, 34–39.

    PubMed  CAS  Google Scholar 

  116. Shevach,E.M. (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat.Rev.Immunol., 2, 389–400.

    PubMed  CAS  Google Scholar 

  117. Malek,T.R., Yu,A., Vincek,V., Scibelli,P., & Kong,L. (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity., 17, 167–178.

    PubMed  CAS  Google Scholar 

  118. Onizuka,S., Tawara,I., Shimizu,J., Sakaguchi,S., Fujita,T., & Nakayama,E. (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res., 59, 3128–3133.

    PubMed  CAS  Google Scholar 

  119. Steitz,J., Bruck,J., Lenz,J., Knop,J., & Tuting,T. (2001) Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res., 61, 8643–8646.

    PubMed  CAS  Google Scholar 

  120. Nagai,H., Horikawa,T., Hara,I., Fukunaga,A., Oniki,S., Oka,M., Nishigori,C., & Ichihashi,M. (2004) In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp.Dermatol., 13, 613–620.

    PubMed  CAS  Google Scholar 

  121. Prasad,S.J., Farrand,K.J., Matthews,S.A., Chang,J.H., McHugh,R.S., & Ronchese,F. (2005) Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells. J.Immunol., 174, 90–98.

    PubMed  CAS  Google Scholar 

  122. Dannull,J., Su,Z., Rizzieri,D., Yang,B.K., Coleman,D., Yancey,D., Zhang,A., Dahm,P., Chao,N., Gilboa,E., & Vieweg,J. (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J.Clin.Invest, 115, 3623–3633.

    PubMed  CAS  Google Scholar 

  123. Barnett,B., Kryczek,I., Cheng,P., Zou,W., & Curiel,T.J. (2005) Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am.J.Reprod.Immunol., 54, 369–377.

    PubMed  CAS  Google Scholar 

  124. Antony,P.A., Piccirillo,C.A., Akpinarli,A., Finkelstein,S.E., Speiss,P.J., Surman,D.R., Palmer,D.C., Chan,C.C., Klebanoff,C.A., Overwijk,W.W., Rosenberg,S.A., & Restifo,N.P. (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J.Immunol., 174, 2591–2601.

    PubMed  CAS  Google Scholar 

  125. Gattinoni,L., Powell,D.J., Jr., Rosenberg,S.A., & Restifo,N.P. (2006) Adoptive immunotherapy for cancer: building on success. Nat.Rev.Immunol., 6, 383–393.

    PubMed  CAS  Google Scholar 

  126. Turk,M.J., Guevara-Patino,J.A., Rizzuto,G.A., Engelhorn,M.E., Sakaguchi,S., & Houghton,A.N. (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J.Exp.Med., 200, 771–782.

    PubMed  CAS  Google Scholar 

  127. Cohen,A.D., Diab,A., Perales,M.A., Wolchok,J.D., Rizzuto,G., Merghoub,T., Huggins,D., Liu,C., Turk,M.J., Restifo,N.P., Sakaguchi,S., & Houghton,A.N. (2006) Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res., 66, 4904–4912.

    PubMed  CAS  Google Scholar 

  128. Sugamura,K., Ishii,N., & Weinberg,A.D. (2004) Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat.Rev.Immunol., 4, 420–431.

    PubMed  CAS  Google Scholar 

  129. Shimizu,J., Yamazaki,S., Takahashi,T., Ishida,Y., & Sakaguchi,S. (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat.Immunol., 3, 135–142.

    PubMed  CAS  Google Scholar 

  130. Valzasina,B., Guiducci,C., Dislich,H., Killeen,N., Weinberg,A.D., & Colombo,M.P. (2005) Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood, 105, 2845–2851.

    PubMed  CAS  Google Scholar 

  131. Stephens,G.L., McHugh,R.S., Whitters,M.J., Young,D.A., Luxenberg,D., Carreno,B.M., Collins,M., & Shevach,E.M. (2004) Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J.Immunol., 173, 5008–5020.

    PubMed  CAS  Google Scholar 

  132. Hodi,F.S. & Dranoff,G. (2006) Combinatorial cancer immunotherapy. Adv.Immunol., 90, 341–368.

    PubMed  Google Scholar 

  133. Phan,G.Q., Yang,J.C., Sherry,R.M., Hwu,P., Topalian,S.L., Schwartzentruber,D.J., Restifo,N.P., Haworth,L.R., Seipp,C.A., Freezer,L.J., Morton,K.E., Mavroukakis,S.A., Duray,P.H., Steinberg,S.M., Allison,J.P., Davis,T.A., & Rosenberg,S.A. (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc.Natl.Acad.Sci.U.S.A, 100, 8372–8377.

    PubMed  CAS  Google Scholar 

  134. Hodi,F.S., Mihm,M.C., Soiffer,R.J., Haluska,F.G., Butler,M., Seiden,M.V., Davis,T., Henry-Spires,R., MacRae,S., Willman,A., Padera,R., Jaklitsch,M.T., Shankar,S., Chen,T.C., Korman,A., Allison,J.P., & Dranoff,G. (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc.Natl.Acad.Sci.U.S.A, 100, 4712–4717.

    PubMed  CAS  Google Scholar 

  135. Attia,P., Phan,G.Q., Maker,A.V., Robinson,M.R., Quezado,M.M., Yang,J.C., Sherry,R.M., Topalian,S.L., Kammula,U.S., Royal,R.E., Restifo,N.P., Haworth,L.R., Levy,C., Mavroukakis,S.A., Nichol,G., Yellin,M.J., & Rosenberg,S.A. (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J.Clin.Oncol., 23, 6043–6053.

    PubMed  CAS  Google Scholar 

  136. Sanderson,K., Scotland,R., Lee,P., Liu,D., Groshen,S., Snively,J., Sian,S., Nichol,G., Davis,T., Keler,T., Yellin,M., & Weber,J. (2005) Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J.Clin.Oncol., 23, 741–750.

    PubMed  CAS  Google Scholar 

  137. Ribas,A., Camacho,L.H., Lopez-Berestein,G., Pavlov,D., Bulanhagui,C.A., Millham,R., Comin-Anduix,B., Reuben,J.M., Seja,E., Parker,C.A., Sharma,A., Glaspy,J.A., & Gomez-Navarro,J. (2005) Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J.Clin.Oncol., 23, 8968–8977.

    PubMed  CAS  Google Scholar 

  138. Beck,K.E., Blansfield,J.A., Tran,K.Q., Feldman,A.L., Hughes,M.S., Royal,R.E., Kammula,U.S., Topalian,S.L., Sherry,R.M., Kleiner,D., Quezado,M., Lowy,I., Yellin,M., Rosenberg,S.A., & Yang,J.C. (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J.Clin.Oncol., 24, 2283–2289.

    PubMed  CAS  Google Scholar 

  139. Peggs,K.S., Quezada,S.A., Korman,A.J., & Allison,J.P. (2006) Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr.Opin.Immunol., 18, 206–213.

    PubMed  CAS  Google Scholar 

  140. Lurquin,C., Lethe,B., De Plaen,E., Corbiere,V., Theate,I., van Baren,N., Coulie,P.G., & Boon,T. (2005) Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J.Exp.Med., 201, 249–257.

    PubMed  CAS  Google Scholar 

  141. Maker,A.V., Phan,G.Q., Attia,P., Yang,J.C., Sherry,R.M., Topalian,S.L., Kammula,U.S., Royal,R.E., Haworth,L.R., Levy,C., Kleiner,D., Mavroukakis,S.A., Yellin,M., & Rosenberg,S.A. (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann.Surg.Oncol., 12, 1005–1016.

    PubMed  Google Scholar 

  142. Atkins,M.B., Lotze,M.T., Dutcher,J.P., Fisher,R.I., Weiss,G., Margolin,K., Abrams,J., Sznol,M., Parkinson,D., Hawkins,M., Paradise,C., Kunkel,L., & Rosenberg,S.A. (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J.Clin.Oncol., 17, 2105–2116.

    PubMed  CAS  Google Scholar 

  143. Rosenberg,S.A. (2000) Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J.Sci.Am., 6 Suppl 1, S2-S7.

    PubMed  Google Scholar 

  144. Fong,L., Kavanagh,B., Rini,B.I., Shaw,V., Weinberg,V., & Small,E.J. (2006) A phase I trial of combination immunotherapy with CTLA-4 blockade and GM-CSF in hormone-refractory prostate cancer. Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings, 24, 2508.

    Google Scholar 

  145. Hurwitz,A.A., Sullivan,T.J., Krummel,M.F., Sobel,R.A., & Allison,J.P. (1997) Specific blockade of CTLA-4/B7 interactions results in exacerbated clinical and histologic disease in an actively-induced model of experimental allergic encephalomyelitis. J.Neuroimmunol., 73, 57–62.

    PubMed  Google Scholar 

  146. Karandikar,N.J., Vanderlugt,C.L., Walunas,T.L., Miller,S.D., & Bluestone,J.A. (1996) CTLA-4: a negative regulator of autoimmune disease. J.Exp.Med., 184, 783–788.

    PubMed  CAS  Google Scholar 

  147. Perrin,P.J., Maldonado,J.H., Davis,T.A., June,C.H., & Racke,M.K. (1996) CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J.Immunol., 157, 1333–1336.

    PubMed  CAS  Google Scholar 

  148. Luhder,F., Hoglund,P., Allison,J.P., Benoist,C., & Mathis,D. (1998) Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J.Exp.Med., 187, 427–432.

    PubMed  CAS  Google Scholar 

  149. Wang,H.B., Shi,F.D., Li,H., Chambers,B.J., Link,H., & Ljunggren,H.G. (2001) Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. J.Immunol., 166, 6430–6436.

    PubMed  CAS  Google Scholar 

  150. Keler,T., Halk,E., Vitale,L., O’Neill,T., Blanset,D., Lee,S., Srinivasan,M., Graziano,R.F., Davis,T., Lonberg,N., & Korman,A. (2003) Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J.Immunol., 171, 6251–6259.

    PubMed  CAS  Google Scholar 

  151. Korman,A., Yellin,M., & Keler,T. (2005) Tumor immunotherapy: preclinical and clinical activity of anti-CTLA4 antibodies. Curr.Opin.Investig.Drugs, 6, 582–591.

    PubMed  CAS  Google Scholar 

  152. Robinson,M.R., Chan,C.C., Yang,J.C., Rubin,B.I., Gracia,G.J., Sen,H.N., Csaky,K.G., & Rosenberg,S.A. (2004) Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J.Immunother., 27, 478–479.

    PubMed  Google Scholar 

  153. Blansfield,J.A., Beck,K.E., Tran,K., Yang,J.C., Hughes,M.S., Kammula,U.S., Royal,R.E., Topalian,S.L., Haworth,L.R., Levy,C., Rosenberg,S.A., & Sherry,R.M. (2005) Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J.Immunother., 28, 593–598.

    PubMed  CAS  Google Scholar 

  154. Dong,H., Strome,S.E., Salomao,D.R., Tamura,H., Hirano,F., Flies,D.B., Roche,P.C., Lu,J., Zhu,G., Tamada,K., Lennon,V.A., Celis,E., & Chen,L. (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat.Med., 8, 793–800.

    PubMed  CAS  Google Scholar 

  155. Brown,J.A., Dorfman,D.M., Ma,F.R., Sullivan,E.L., Munoz,O., Wood,C.R., Greenfield,E.A., & Freeman,G.J. (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J.Immunol., 170, 1257–1266.

    PubMed  CAS  Google Scholar 

  156. Ohigashi,Y., Sho,M., Yamada,Y., Tsurui,Y., Hamada,K., Ikeda,N., Mizuno,T., Yoriki,R., Kashizuka,H., Yane,K., Tsushima,F., Otsuki,N., Yagita,H., Azuma,M., & Nakajima,Y. (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin.Cancer Res., 11, 2947–2953.

    PubMed  CAS  Google Scholar 

  157. Rosenwald,A., Wright,G., Leroy,K., Yu,X., Gaulard,P., Gascoyne,R.D., Chan,W.C., Zhao,T., Haioun,C., Greiner,T.C., Weisenburger,D.D., Lynch,J.C., Vose,J., Armitage,J.O., Smeland,E.B., Kvaloy,S., Holte,H., Delabie,J., Campo,E., Montserrat,E., Lopez-Guillermo,A., Ott,G., Muller-Hermelink,H.K., Connors,J.M., Braziel,R., Grogan,T.M., Fisher,R.I., Miller,T.P., LeBlanc,M., Chiorazzi,M., Zhao,H., Yang,L., Powell,J., Wilson,W.H., Jaffe,E.S., Simon,R., Klausner,R.D., & Staudt,L.M. (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J.Exp.Med., 198, 851–862.

    PubMed  CAS  Google Scholar 

  158. Iwai,Y., Ishida,M., Tanaka,Y., Okazaki,T., Honjo,T., & Minato,N. (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc.Natl.Acad.Sci.U.S.A, 99, 12293–12297.

    PubMed  CAS  Google Scholar 

  159. Strome,S.E., Dong,H., Tamura,H., Voss,S.G., Flies,D.B., Tamada,K., Salomao,D., Cheville,J., Hirano,F., Lin,W., Kasperbauer,J.L., Ballman,K.V., & Chen,L. (2003) B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res., 63, 6501–6505.

    PubMed  CAS  Google Scholar 

  160. Curiel,T.J., Wei,S., Dong,H., Alvarez,X., Cheng,P., Mottram,P., Krzysiek,R., Knutson,K.L., Daniel,B., Zimmermann,M.C., David,O., Burow,M., Gordon,A., Dhurandhar,N., Myers,L., Berggren,R., Hemminki,A., Alvarez,R.D., Emilie,D., Curiel,D.T., Chen,L., & Zou,W. (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat.Med., 9, 562–567.

    PubMed  CAS  Google Scholar 

  161. Carter,L., Fouser,L.A., Jussif,J., Fitz,L., Deng,B., Wood,C.R., Collins,M., Honjo,T., Freeman,G.J., & Carreno,B.M. (2002) PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur.J.Immunol., 32, 634–643.

    PubMed  CAS  Google Scholar 

  162. Liu,X., Gao,J.X., Wen,J., Yin,L., Li,O., Zuo,T., Gajewski,T.F., Fu,Y.X., Zheng,P., & Liu,Y. (2003) B7DC/PDL2 promotes tumor immunity by a PD-1-independent mechanism. J.Exp.Med., 197, 1721–1730.

    PubMed  CAS  Google Scholar 

  163. Iwai,Y., Terawaki,S., & Honjo,T. (2005) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int.Immunol., 17, 133–144.

    PubMed  CAS  Google Scholar 

  164. Suh,W.K., Gajewska,B.U., Okada,H., Gronski,M.A., Bertram,E.M., Dawicki,W., Duncan,G.S., Bukczynski,J., Plyte,S., Elia,A., Wakeham,A., Itie,A., Chung,S., Da Costa,J., Arya,S., Horan,T., Campbell,P., Gaida,K., Ohashi,P.S., Watts,T.H., Yoshinaga,S.K., Bray,M.R., Jordana,M., & Mak,T.W. (2003) The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat.Immunol., 4, 899–906.

    PubMed  CAS  Google Scholar 

  165. Zang,X., Loke,P., Kim,J., Murphy,K., Waitz,R., & Allison,J.P. (2003) B7x: a widely expressed B7 family member that inhibits T cell activation. Proc.Natl.Acad.Sci.U.S.A, 100, 10388–10392.

    PubMed  CAS  Google Scholar 

  166. Prasad,D.V., Richards,S., Mai,X.M., & Dong,C. (2003) B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity., 18, 863–873.

    PubMed  CAS  Google Scholar 

  167. Sica,G.L., Choi,I.H., Zhu,G., Tamada,K., Wang,S.D., Tamura,H., Chapoval,A.I., Flies,D.B., Bajorath,J., & Chen,L. (2003) B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity., 18, 849–861.

    PubMed  CAS  Google Scholar 

  168. Choi,I.H., Zhu,G., Sica,G.L., Strome,S.E., Cheville,J.C., Lau,J.S., Zhu,Y., Flies,D.B., Tamada,K., & Chen,L. (2003) Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family. J.Immunol., 171, 4650–4654.

    PubMed  CAS  Google Scholar 

  169. Salceda,S., Tang,T., Kmet,M., Munteanu,A., Ghosh,M., Macina,R., Liu,W., Pilkington,G., & Papkoff,J. (2005) The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp.Cell Res., 306, 128–141.

    PubMed  CAS  Google Scholar 

  170. Tringler,B., Zhuo,S., Pilkington,G., Torkko,K.C., Singh,M., Lucia,M.S., Heinz,D.E., Papkoff,J., & Shroyer,K.R. (2005) B7-h4 is highly expressed in ductal and lobular breast cancer. Clin.Cancer Res., 11, 1842–1848.

    PubMed  CAS  Google Scholar 

  171. Kryczek,I., Wei,S., Zou,L., Zhu,G., Mottram,P., Xu,H., Chen,L., & Zou,W. (2006a) Cutting Edge: Induction of B7-H4 on APCs through IL-10: Novel Suppressive Mode for Regulatory T Cells. J.Immunol., 177, 40–44.

    CAS  Google Scholar 

  172. Kryczek,I., Zou,L., Rodriguez,P., Zhu,G., Wei,S., Mottram,P., Brumlik,M., Cheng,P., Curiel,T., Myers,L., Lackner,A., Alvarez,X., Ochoa,A., Chen,L., & Zou,W. (2006b) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J.Exp.Med., 203, 871–881.

    CAS  Google Scholar 

  173. Han,P., Goularte,O.D., Rufner,K., Wilkinson,B., & Kaye,J. (2004) An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J.Immunol., 172, 5931–5939.

    PubMed  CAS  Google Scholar 

  174. Hurchla,M.A., Sedy,J.R., Gavrielli,M., Drake,C.G., Murphy,T.L., & Murphy,K.M. (2005) B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly Induced in anergic CD4+ T cells. J.Immunol., 174, 3377–3385.

    PubMed  CAS  Google Scholar 

  175. Sedy,J.R., Gavrieli,M., Potter,K.G., Hurchla,M.A., Lindsley,R.C., Hildner,K., Scheu,S., Pfeffer,K., Ware,C.F., Murphy,T.L., & Murphy,K.M. (2005) B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat.Immunol., 6, 90–98.

    PubMed  CAS  Google Scholar 

  176. Gri,G., Gallo,E., Di Carlo,E., Musiani,P., & Colombo,M.P. (2003) OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response. J.Immunol., 170, 99–106.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Peggs, K.S., Quezada, S.A., Allison, J.P. (2007). Checkpoint Blockade and Combinatorial Immunotherapies. In: Kaufman, H.L., Wolchok, J.D. (eds) General Principles of Tumor Immunotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6087-8_16

Download citation

Publish with us

Policies and ethics