Skip to main content

Metabolic Regulation of Cerebral Blood Flow by Adenosine

  • Chapter
Purines

Abstract

This chapter will review the data which support the hypothesis that adenosine is a metabolic regulator of cerebral blood flow (CBF) and cerebral vascular resistance (CVR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berne, R.M., Rubio, R. and Curnish, R.R. (1974). Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ. Res. 35, 262–271.

    Article  CAS  Google Scholar 

  2. Bockman, E.L., Fritscka, E., Ferguson, J.L. and Spitzer J.J. (1981). Increased adenosine in cerebrospinal fluid during the autoregulatory response to mild hypertension. In: Cerebral Microcirculation and Metabolism ( ed. J. Cervos-Navarro. Raven Press, New York, pp. 243–248.

    Google Scholar 

  3. Emerson, T.E. and Raymond, R.M. (1981). Involvement of adenosine in cerebral hypoxic hyperemia in dog. Am. J. Physiol. 241, H134-H138.

    Google Scholar 

  4. Hardebo, J.E. and Edvinsson, L. (1979). Adenine compounds: Cerebrovascular effects in vitro with reference to their possible involvement in migraine. Stroke 10, 58–62.

    Google Scholar 

  5. Heistad, D.D. and Marcus, M.L. (1980). Effect of acetylcholine, vasoactive intestinal peptide, and adenosine on cerebral blood flow. Blood Vessels 17, 151–152.

    Google Scholar 

  6. Kontos, H.A. and Wei, E.P. (1981). Role of adenosine in cerebral arteriolar dilation from arterial hypoxia. (Abstract) Fed Proc. 40, 454.

    Google Scholar 

  7. Kontos, H.A., Wei, E.P., Navari, R.M., Levasseur, J.E., Rosenblum, W.I. and Patterson, J.L. (1978). Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am. J. Physiol. 234, H371-H383.

    Google Scholar 

  8. Kreutzberg, G.W., Barron, K.D. and Schubert, P. (1978). Cytochemical localization of 5’-nucleotidase in glial plasma membranes. Brain Res. 158, 247–257.

    Article  PubMed  CAS  Google Scholar 

  9. McIllwain, H. (1973). Adenosine in neurohumoral and regulatory roles in the brain. In: Central Nervous System--Studies on Metabolic Regulation and Function. eds. E. GenazziT and H. rk Heen. Springer-Verlag, New York. pp 3–11.

    Google Scholar 

  10. Meldrum, B.S. and Nilsson, B. (1976). Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain 99, 523–524.

    Article  PubMed  CAS  Google Scholar 

  11. Morii, S., Winn, H.R. and Berne, R.M.(1983). Effect of theophylline, an adenosine receptor blocker, on cerebral blood flow (CBF) during rest and transient hypoxia. J. Cereb. Blood Flow Metabol. 3(Suppl 1), S480-S481.

    Google Scholar 

  12. Morii, S., Ngai, A., Berne, R.M. and Winn, H.R. (1984). The effects of theophylline on cerebral blood flow during sustained hypoxia. Fed. Proc. 43, 512.

    Google Scholar 

  13. Mustafa, S.J., Rubio, R. and Berne, R.M. (1975). Uptake of adenosine by dispersed chick embryonic cardiac cells. Am. J. Physiol. 228, 62–67.

    Google Scholar 

  14. Pull, I. and Mclllwain, H. (1972). Metabolism of [14C]adenine and derivates by cerebral tissues, superfused and electrically stimulated. Biochem. J. 126, 965–973.

    Google Scholar 

  15. Rubio, R., Berne, R.M., Bockman, E.L. and Curnish, R.R. (1975). Relationship between adenosine concentration and oxygen supply in rat brain. Am. J. Physiol. 228, 1896–1902.

    Google Scholar 

  16. Schrader, J., Berne, R.M. and Rubio, R. (1972). Uptake and metabolism of adenosine by human erythrocyte ghosts. Am. J. Physiol. 223: 159–166.

    Google Scholar 

  17. Schrader, J., Wahl, M., Kuschinsky, W. and Kreutzberg, G.W. (1980). Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pfluegers Arch. 387, 245–251.

    Article  CAS  Google Scholar 

  18. Schultz, V. and Lowenstein, J.M. (1978). The purine nucleotide cycle. J. Biol. Chem. 253, 1938–1943.

    Google Scholar 

  19. Seisjo, B.K. (1984). Cerebral circulation and metabolism. J. Neurosurg. 60, 883–908.

    Article  Google Scholar 

  20. Wahl M. and Kuschinsky, W. (1976). The dilatory action of adenosine in pial arteries of cats and its inhibition by theophylline. Pfluegers Arch. 362, 55–59.

    Google Scholar 

  21. Wahl, M. and Kuschinsky, W. (1979). Unimportance of perivascular H+ and K+ activities for the adjustment of pial arterial diameter during changes of arterial blood pressure in cats. Pfluegers Arch. 382, 203–208.

    Article  CAS  Google Scholar 

  22. Winn, H.R., Rubio, R., Berne, R.M. (1979). Brain adenosine production during 60 seconds of ischemia. Circ. Res. 45, 486–492.

    Google Scholar 

  23. Winn, H.R., Park, T.S., Curnish, R.R., Rubio, R. and Berne, R.M. (1980a). Incorporation of adenosine and its metabolites into brain nucleotides. Am. J. Physiol. 239, H212-H219.

    Google Scholar 

  24. Winn, H.R., Welsh, J., Rubio, R. and Berne, R.M. (1980b). Brain adenosine production in rat during sustained alteration in systemic blood pressure. Am. J. Physiol. 239, H644-H651.

    Google Scholar 

  25. Winn, H.R., Rubio, R. and Berne, R.M. (1980c). Changes in brain adenosine during bicuculline-induced seizures in rats: Effects of hypoxia and altered systemic blood pressure. Circ. Res. 47, 481–491.

    Google Scholar 

  26. Winn, H.R., Rubio, R. and Berne, R.M. (1981a). Brain adenosine concentration during hypoxia in rat. Am. J. Physiol. 241, H235-H242.

    Google Scholar 

  27. Winn, H.R., Rubio, R., Curnish, R.R. and Berne, R.M. (1981b). Changes in regional cerebral blood flow (rCBF) caused by increases in CSF concentrations of adenosine and 2-chloroadenosine (CHL-ADO). J. Cereb. Blood Flow Metabol. i(Suppl 1), S401-S402.

    Google Scholar 

  28. Winn, H.R., Rubio, R. and Berne, R.M. (1981c). Editorial: The role of adenosine in the regulation of cerebral blood flow. J. Cereb. Blood Flow Metabol. 1, 239–244.

    Google Scholar 

  29. Winn, H.R., Morii, S., Weaver, D.D., Reed, J.C., Ngai, A.C. and Berne, R.M. (1983). Changes in brain adenosine concentration during hypoglycemia and posthypoxic hyperemia. J. Cereb. Blood Flow Metabol. 3 (Suppl 1), S449–450.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Contributors

About this chapter

Cite this chapter

Winn, H.R. (1985). Metabolic Regulation of Cerebral Blood Flow by Adenosine. In: Stone, T.W. (eds) Purines. Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-07564-5_14

Download citation

Publish with us

Policies and ethics