Skip to main content

In Vitro Assays for Assessing Potential Adverse Effects of Cancer Immunotherapeutics

  • Protocol
  • First Online:
Immuno-Oncology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 2035 Accesses

Abstract

The field of cancer immunotherapy (CIT) covers a wide and ever-growing variety of molecular platforms and modalities. Since the overall aim of CIT is to activate the immune system and elicit anticancer immune responses, a majority of adverse effects noted with CIT drugs are related to the molecule’s pharmacology and exaggeration of pharmacological responses. A major challenge for CIT is that nonclinical toxicity studies utilizing healthy animals often do not identify relevant pharmacological toxicities due to low or no expression of target in nontumor tissues. Therefore, the design of a battery of in vitro assays is crucial for the assessment of potential risks to cancer patients and the set-up of an adequate safety monitoring plan for clinical trials. The effective translation of results from in vitro assays to in vivo safety assessment requires a thorough understanding of the molecule’s biology and mechanism of action (MoA) and careful interpretation of desired versus exaggerated pharmacology. Given the vast array of platforms and modalities for CIT, in vitro assays to assess potential adverse effects must be tailored on an individual molecule basis. In this chapter, we highlight some of the principal types of in vitro assays conducted during the course of CIT drug development, the considerations and challenges therein, and how these assays contribute to the overall safety assessment of CIT drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimaraes F, Burt BM, Kheradmand F, Paust S (2017) Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol 8:829. https://doi.org/10.3389/fimmu.2017.00829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ventola CL (2017) Cancer immunotherapy, part 3: challenges and future trends. P T 42(8):514–521

    PubMed  PubMed Central  Google Scholar 

  3. Abdel-Wahab N, Alshawa A, Suarez-Almazor ME (2017) Adverse events in cancer immunotherapy. Adv Exp Med Biol 995:155–174. https://doi.org/10.1007/978-3-319-53156-4_8

    Article  CAS  PubMed  Google Scholar 

  4. Brennan FR, Kiessling A (2017) In vitro assays supporting the safety assessment of immunomodulatory monoclonal antibodies. Toxicol In Vitro 45(Pt 3):296–308. https://doi.org/10.1016/j.tiv.2017.02.025

    Article  CAS  PubMed  Google Scholar 

  5. Glass TR, Ohmura N, Saiki H (2007) Least detectable concentration and dynamic range of three immunoassay systems using the same antibody. Anal Chem 79(5):1954–1960. https://doi.org/10.1021/ac061288z

    Article  CAS  PubMed  Google Scholar 

  6. Bee C, Abdiche YN, Stone DM, Collier S, Lindquist KC, Pinkerton AC, Pons J, Rajpal A (2012) Exploring the dynamic range of the kinetic exclusion assay in characterizing antigen-antibody interactions. PLoS One 7(4):e36261. https://doi.org/10.1371/journal.pone.0036261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9(4):325–338. https://doi.org/10.1038/nrd3003

    Article  CAS  PubMed  Google Scholar 

  8. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianferani S (2013) Characterization of therapeutic antibodies and related products. Anal Chem 85(2):715–736. https://doi.org/10.1021/ac3032355

    Article  CAS  PubMed  Google Scholar 

  9. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daeron M (2009) Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113(16):3716–3725. https://doi.org/10.1182/blood-2008-09-179754

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Mathieu M, Brezski RJ (2018) IgG Fc engineering to modulate antibody effector functions. Protein Cell 9(1):63–73. https://doi.org/10.1007/s13238-017-0473-8

    Article  CAS  PubMed  Google Scholar 

  11. Brezski RJ, Kinder M, Grugan KD, Soring KL, Carton J, Greenplate AR, Petley T, Capaldi D, Brosnan K, Emmell E, Watson S, Jordan RE (2014) A monoclonal antibody against hinge-cleaved IgG restores effector function to proteolytically-inactivated IgGs in vitro and in vivo. MAbs 6(5):1265–1273. https://doi.org/10.4161/mabs.29825

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tao MH, Smith RI, Morrison SL (1993) Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J Exp Med 178(2):661–667

    Article  CAS  PubMed  Google Scholar 

  13. Wang Q, Chung CY, Chough S, Betenbaugh MJ (2018) Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 115(6):1378–1393. https://doi.org/10.1002/bit.26567

    Article  CAS  PubMed  Google Scholar 

  14. Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4(4):419–425. https://doi.org/10.4161/mabs.20996

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kellner C, Otte A, Cappuzzello E, Klausz K, Peipp M (2017) Modulating cytotoxic effector functions by Fc engineering to improve cancer therapy. Transfus Med Hemother 44(5):327–336. https://doi.org/10.1159/000479980

    Article  PubMed  PubMed Central  Google Scholar 

  16. Junttila TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, Crocker L, Pabonan O, Baginski T, Meng G, Totpal K, Kelley RF, Sliwkowski MX (2010) Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res 70(11):4481–4489. https://doi.org/10.1158/0008-5472.CAN-09-3704

    Article  CAS  PubMed  Google Scholar 

  17. Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, Matsushima K, Ueda R, Hanai N, Shitara K (2004) Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64(6):2127–2133

    Article  CAS  PubMed  Google Scholar 

  18. Schlothauer T, Herter S, Koller CF, Grau-Richards S, Steinhart V, Spick C, Kubbies M, Klein C, Umana P, Mossner E (2016) Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel 29(10):457–466. https://doi.org/10.1093/protein/gzw040

    Article  CAS  PubMed  Google Scholar 

  19. Overdijk MB, Verploegen S, Bogels M, van Egmond M, Lammerts van Bueren JJ, Mutis T, Groen RW, Breij E, Martens AC, Bleeker WK, Parren PW (2015) Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 7(2):311–321. https://doi.org/10.1080/19420862.2015.1007813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gómez Román VR, Murray JC, Weiner LM (2014) Antibody-dependent cellular cytotoxicity (ADCC). In: Ackerman A, Nimmerjahn F (eds) Antibody Fc: linking adaptive and innate immunity, 1st edn. Elsevier Inc, San Diego, CA

    Google Scholar 

  21. Bakema JE, van Egmond M (2014) Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. Curr Top Microbiol Immunol 382:373–392. https://doi.org/10.1007/978-3-319-07911-0_17

    Article  CAS  PubMed  Google Scholar 

  22. Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L, Cocco L, Vitale M (2007) NK cells and cancer. J Immunol 178(7):4011–4016

    Article  CAS  PubMed  Google Scholar 

  23. Nelson DL, Kurman CC, Serbousek DE (1993) 51Cr release assay of antibody-dependent cell-mediated cytotoxicity (ADCC). Curr Protoc Immunol 8(1):7.27.21–27.27.28

    Article  Google Scholar 

  24. Parekh BS, Berger E, Sibley S, Cahya S, Xiao L, LaCerte MA, Vaillancourt P, Wooden S, Gately D (2012) Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay. MAbs 4(3):310–318. https://doi.org/10.4161/mabs.19873

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zaritskaya L, Shurin MR, Sayers TJ, Malyguine AM (2010) New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines 9(6):601–616. https://doi.org/10.1586/erv.10.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gul N, van Egmond M (2015) Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Res 75(23):5008–5013. https://doi.org/10.1158/0008-5472.CAN-15-1330

    Article  CAS  PubMed  Google Scholar 

  27. Braster R, O’Toole T, van Egmond M (2014) Myeloid cells as effector cells for monoclonal antibody therapy of cancer. Methods 65(1):28–37. https://doi.org/10.1016/j.ymeth.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  28. Kurdi AT, Glavey SV, Bezman NA, Jhatakia A, Guerriero JL, Manier S, Moschetta M, Mishima Y, Roccaro A, Detappe A, Liu CJ, Sacco A, Huynh D, Tai YT, Robbins MD, Azzi J, Ghobrial IM (2018) Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab. Mol Cancer Ther 17(7):1454–1463. https://doi.org/10.1158/1535-7163.MCT-17-0998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Su S, Zhao J, Xing Y, Zhang X, Liu J, Ouyang Q, Chen J, Su F, Liu Q, Song E (2018) Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175(2):442–457 e423. https://doi.org/10.1016/j.cell.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe M, Wallace PK, Keler T, Deo YM, Akewanlop C, Hayes DF (1999) Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210. Breast Cancer Res Treat 53(3):199–207

    Article  CAS  PubMed  Google Scholar 

  31. Velmurugan R, Ramakrishnan S, Kim M, Ober RJ, Ward ES (2018) Phagocytosis of antibody-opsonized tumor cells leads to the formation of a discrete vacuolar compartment in macrophages. Traffic 19(4):273–284. https://doi.org/10.1111/tra.12552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rossignol A, Bonnaudet V, Clemenceau B, Vie H, Bretaudeau L (2017) A high-performance, non-radioactive potency assay for measuring cytotoxicity: a full substitute of the chromium-release assay targeting the regulatory-compliance objective. MAbs 9(3):521–535. https://doi.org/10.1080/19420862.2017.1286435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang D, Whitaker B, Derebe MG, Chiu ML (2018) FcgammaRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody. MAbs 10(3):463–475. https://doi.org/10.1080/19420862.2018.1424611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rogers LM, Veeramani S, Weiner GJ (2014) Complement in monoclonal antibody therapy of cancer. Immunol Res 59(1–3):203–210. https://doi.org/10.1007/s12026-014-8542-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Redpath S, Michaelsen T, Sandlie I, Clark MR (1998) Activation of complement by human IgG1 and human IgG3 antibodies against the human leucocyte antigen CD52. Immunology 93(4):595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gillissen MA, Yasuda E, de Jong G, Levie SE, Go D, Spits H, van Helden PM, Hazenberg MD (2016) The modified FACS calcein AM retention assay: a high throughput flow cytometer based method to measure cytotoxicity. J Immunol Methods 434:16–23. https://doi.org/10.1016/j.jim.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  37. Loeff FC, van Egmond HME, Nijmeijer BA, Falkenburg JHF, Halkes CJ, Jedema I (2017) Complement-dependent cytotoxicity induced by therapeutic antibodies in B-cell acute lymphoblastic leukemia is dictated by target antigen expression levels and augmented by loss of membrane-bound complement inhibitors. Leuk Lymphoma 58(9):1–14. https://doi.org/10.1080/10428194.2017.1281411

    Article  CAS  PubMed  Google Scholar 

  38. Geis N, Zell S, Rutz R, Li W, Giese T, Mamidi S, Schultz S, Kirschfink M (2010) Inhibition of membrane complement inhibitor expression (CD46, CD55, CD59) by siRNA sensitizes tumor cells to complement attack in vitro. Curr Cancer Drug Targets 10(8):922–931

    Article  CAS  PubMed  Google Scholar 

  39. Kesselring R, Thiel A, Pries R, Fichtner-Feigl S, Brunner S, Seidel P, Bruchhage KL, Wollenberg B (2014) The complement receptors CD46, CD55 and CD59 are regulated by the tumour microenvironment of head and neck cancer to facilitate escape of complement attack. Eur J Cancer 50(12):2152–2161. https://doi.org/10.1016/j.ejca.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  40. Ellerman D (2018) Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods. https://doi.org/10.1016/j.ymeth.2018.10.026

  41. Yu L, Wang J (2019) T cell-redirecting bispecific antibodies in cancer immunotherapy: recent advances. J Cancer Res Clin Oncol 145(4):941–956. https://doi.org/10.1007/s00432-019-02867-6

    Article  CAS  PubMed  Google Scholar 

  42. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, Kufer P, Riethmuller G, Bargou R, Baeuerle PA (2002) Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 100(6):690–697. https://doi.org/10.1002/ijc.10557

    Article  CAS  PubMed  Google Scholar 

  43. Durben M, Schmiedel D, Hofmann M, Vogt F, Nubling T, Pyz E, Buhring HJ, Rammensee HG, Salih HR, Grosse-Hovest L, Jung G (2015) Characterization of a bispecific FLT3 X CD3 antibody in an improved, recombinant format for the treatment of leukemia. Mol Ther 23(4):648–655. https://doi.org/10.1038/mt.2015.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Kohnke T, Vick B, Jeremias I, Metzeler KH, Altmann T, Schneider S, Fiegl M, Spiekermann K, Bauerle PA, Hiddemann W, Riethmuller G, Subklewe M (2016) Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 30(2):484–491. https://doi.org/10.1038/leu.2015.214

    Article  CAS  PubMed  Google Scholar 

  45. Leong SR, Sukumaran S, Hristopoulos M, Totpal K, Stainton S, Lu E, Wong A, Tam L, Newman R, Vuillemenot BR, Ellerman D, Gu C, Mathieu M, Dennis MS, Nguyen A, Zheng B, Zhang C, Lee G, Chu YW, Prell RA, Lin K, Laing ST, Polson AG (2017) An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood 129(5):609–618. https://doi.org/10.1182/blood-2016-08-735365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, Li Y, Yan X, Clark R, Reyes A, Stefanich E, Mai E, Young J, Johnson C, Huseni M, Wang X, Chen Y, Wang P, Wang H, Dybdal N, Chu YW, Chiorazzi N, Scheer JM, Junttila T, Totpal K, Dennis MS, Ebens AJ (2015) Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med 7(287):287ra270. https://doi.org/10.1126/scitranslmed.aaa4802

    Article  Google Scholar 

  47. Li J, Stagg NJ, Johnston J, Harris MJ, Menzies SA, DiCara D, Clark V, Hristopoulos M, Cook R, Slaga D, Nakamura R, McCarty L, Sukumaran S, Luis E, Ye Z, Wu TD, Sumiyoshi T, Danilenko D, Lee GY, Totpal K, Ellerman D, Hotzel I, James JR, Junttila TT (2017) Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell 31(3):383–395. https://doi.org/10.1016/j.ccell.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gavrilyuk JI, Wuellner U, Salahuddin S, Goswami RK, Sinha SC, Barbas CF 3rd (2009) An efficient chemical approach to bispecific antibodies and antibodies of high valency. Bioorg Med Chem Lett 19(14):3716–3720. https://doi.org/10.1016/j.bmcl.2009.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. d’Argouges S, Wissing S, Brandl C, Prang N, Lutterbuese R, Kozhich A, Suzich J, Locher M, Kiener P, Kufer P, Hofmeister R, Baeuerle PA, Bargou RC (2009) Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk Res 33(3):465–473. https://doi.org/10.1016/j.leukres.2008.08.025

    Article  CAS  PubMed  Google Scholar 

  50. Laszlo GS, Gudgeon CJ, Harrington KH, Dell’Aringa J, Newhall KJ, Means GD, Sinclair AM, Kischel R, Frankel SR, Walter RB (2014) Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood 123(4):554–561. https://doi.org/10.1182/blood-2013-09-527044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, Itin C, Prang N, Baeuerle PA (2005) Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 115(1):98–104. https://doi.org/10.1002/ijc.20908

    Article  CAS  PubMed  Google Scholar 

  52. Ellerman D (2019) Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 154:102–117. https://doi.org/10.1016/j.ymeth.2018.10.026

    Article  CAS  PubMed  Google Scholar 

  53. Saber H, Del Valle P, Ricks TK, Leighton JK (2017) An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection. Regul Toxicol Pharmacol 90:144–152. https://doi.org/10.1016/j.yrtph.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  54. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76(1):16–32. https://doi.org/10.1128/MMBR.05015-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Charpentier B, Hiesse C, Ferran C, Lantz O, Fries D, Bach JF, Chatenoud L (1991) Acute clinical syndrome associated with OKT3 administration. Prevention by single injection of an anti-human TNF monoclonal antibody. Presse Med 20(40):2009–2011

    CAS  PubMed  Google Scholar 

  56. Sgro C (1995) Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology 105(1):23–29

    Article  CAS  PubMed  Google Scholar 

  57. Findlay L, Eastwood D, Stebbings R, Sharp G, Mistry Y, Ball C, Hood J, Thorpe R, Poole S (2010) Improved in vitro methods to predict the in vivo toxicity in man of therapeutic monoclonal antibodies including TGN1412. J Immunol Methods 352(1–2):1–12. https://doi.org/10.1016/j.jim.2009.10.013

    Article  CAS  PubMed  Google Scholar 

  58. Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E (2009) Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol 5(5):499–521. https://doi.org/10.1586/eci.09.31

    Article  CAS  PubMed  Google Scholar 

  59. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028. https://doi.org/10.1056/NEJMoa063842

    Article  CAS  PubMed  Google Scholar 

  60. Stebbings R, Findlay L, Edwards C, Eastwood D, Bird C, North D, Mistry Y, Dilger P, Liefooghe E, Cludts I, Fox B, Tarrant G, Robinson J, Meager T, Dolman C, Thorpe SJ, Bristow A, Wadhwa M, Thorpe R, Poole S (2007) “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J Immunol 179(5):3325–3331

    Article  CAS  PubMed  Google Scholar 

  61. Danilenko DM, Wang H (2012) The yin and yang of immunomodulatory biologics: assessing the delicate balance between benefit and risk. Toxicol Pathol 40(2):272–287. https://doi.org/10.1177/0192623311430237

    Article  CAS  PubMed  Google Scholar 

  62. Saber H, Gudi R, Manning M, Wearne E, Leighton JK (2016) An FDA oncology analysis of immune activating products and first-in-human dose selection. Regul Toxicol Pharmacol 81:448–456. https://doi.org/10.1016/j.yrtph.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  63. Saber H, Leighton JK (2015) An FDA oncology analysis of antibody-drug conjugates. Regul Toxicol Pharmacol 71(3):444–452. https://doi.org/10.1016/j.yrtph.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  64. Eastwood D, Findlay L, Poole S, Bird C, Wadhwa M, Moore M, Burns C, Thorpe R, Stebbings R (2010) Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br J Pharmacol 161(3):512–526. https://doi.org/10.1111/j.1476-5381.2010.00922.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vidal JM, Kawabata TT, Thorpe R, Silva-Lima B, Cederbrant K, Poole S, Mueller-Berghaus J, Pallardy M, Van der Laan JW (2010) In vitro cytokine release assays for predicting cytokine release syndrome: the current state-of-the-science. Report of a European Medicines Agency Workshop. Cytokine 51(2):213–215. https://doi.org/10.1016/j.cyto.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  66. Finco D, Grimaldi C, Fort M, Walker M, Kiessling A, Wolf B, Salcedo T, Faggioni R, Schneider A, Ibraghimov A, Scesney S, Serna D, Prell R, Stebbings R, Narayanan PK (2014) Cytokine release assays: current practices and future directions. Cytokine 66(2):143–155. https://doi.org/10.1016/j.cyto.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  67. Grimaldi C, Finco D, Fort MM, Gliddon D, Harper K, Helms WS, Mitchell JA, O’Lone R, Parish ST, Piche MS, Reed DM, Reichmann G, Ryan PC, Stebbings R, Walker M (2016) Cytokine release: a workshop proceedings on the state-of-the-science, current challenges and future directions. Cytokine 85:101–108. https://doi.org/10.1016/j.cyto.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  68. Vessillier S, Eastwood D, Fox B, Sathish J, Sethu S, Dougall T, Thorpe SJ, Thorpe R, Stebbings R (2015) Cytokine release assays for the prediction of therapeutic mAb safety in first-in man trials--Whole blood cytokine release assays are poorly predictive for TGN1412 cytokine storm. J Immunol Methods 424:43–52. https://doi.org/10.1016/j.jim.2015.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leach MW, Halpern WG, Johnson CW, Rojko JL, MacLachlan TK, Chan CM, Galbreath EJ, Ndifor AM, Blanset DL, Polack E, Cavagnaro JA (2010) Use of tissue cross-reactivity studies in the development of antibody-based biopharmaceuticals: history, experience, methodology, and future directions. Toxicol Pathol 38(7):1138–1166. https://doi.org/10.1177/0192623310382559

    Article  PubMed  Google Scholar 

  70. Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW (2012) Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem 3(4):73–92. https://doi.org/10.4331/wjbc.v3.i4.73

    Article  PubMed  PubMed Central  Google Scholar 

  71. (2011) ICH S6(R1): preclinical safety evaluation of biotechnology-derived pharmaceuticals. http://www.ich.org

  72. Geoly FJ (2014) Regulatory forum opinion piece∗: tissue cross-reactivity studies: what constitutes an adequate positive control and how do we report positive staining? Toxicol Pathol 42(6):954–956. https://doi.org/10.1177/0192623313495336

    Article  PubMed  Google Scholar 

  73. Bussiere JL, Leach MW, Price KD, Mounho BJ, Lightfoot-Dunn R (2011) Survey results on the use of the tissue cross-reactivity immunohistochemistry assay. Regul Toxicol Pharmacol 59(3):493–502. https://doi.org/10.1016/j.yrtph.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  74. (2009) ICH S9: nonclinical evaluation for anticancer pharmaceuticals. http://www.ich.org

  75. (2018) ICH S9 guideline: nonclinical evaluation for anticancer pharmaceuticals. questions and answers. http://www.ich.org

  76. Ma A, Dun H, Song L, Hu Y, Zeng L, Bai J, Zhang G, Kinugasa F, Miyao Y, Sakuma S, Okimura K, Kasai N, Daloze P, Chen H (2014) Pharmacokinetics and pharmacodynamics of ASKP1240, a fully human anti-CD40 antibody, in normal and renal transplanted Cynomolgus monkeys. Transplantation 97(4):397–404. https://doi.org/10.1097/01.TP.0000440951.29757.bd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mao CP, Brovarney MR, Dabbagh K, Birnbock HF, Richter WF, Del Nagro CJ (2013) Subcutaneous versus intravenous administration of rituximab: pharmacokinetics, CD20 target coverage and B-cell depletion in cynomolgus monkeys. PLoS One 8(11):e80533. https://doi.org/10.1371/journal.pone.0080533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wyant T, Lackey A, Green M (2008) Validation of a flow cytometry based chemokine internalization assay for use in evaluating the pharmacodynamic response to a receptor antagonist. J Transl Med 6:76. https://doi.org/10.1186/1479-5876-6-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Freeman DJ, McDorman K, Ogbagabriel S, Kozlosky C, Yang BB, Doshi S, Perez-Ruxio JJ, Fanslow W, Starnes C, Radinsky R (2012) Tumor penetration and epidermal growth factor receptor saturation by panitumumab correlate with antitumor activity in a preclinical model of human cancer. Mol Cancer 11:47. https://doi.org/10.1186/1476-4598-11-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lowe PJ, Hijazi Y, Luttringer O, Yin H, Sarangapani R, Howard D (2007) On the anticipation of the human dose in first-in-man trials from preclinical and prior clinical information in early drug development. Xenobiotica 37(10–11):1331–1354. https://doi.org/10.1080/00498250701648008

    Article  CAS  PubMed  Google Scholar 

  81. Stewart JJ, Green CL, Jones N, Liang M, Xu Y, Wilkins DE, Moulard M, Czechowska K, Lanham D, McCloskey TW, Ferbas J, van der Strate BW, Hogerkorp CM, Wyant T, Lackey A, Litwin V (2016) Role of receptor occupancy assays by flow cytometry in drug development. Cytometry B Clin Cytom 90(2):110–116. https://doi.org/10.1002/cyto.b.21355

    Article  CAS  PubMed  Google Scholar 

  82. Weber JS, Dummer R, de Pril V, Lebbe C, Hodi FS, Investigators MDX (2013) Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer 119(9):1675–1682. https://doi.org/10.1002/cncr.27969

    Article  CAS  PubMed  Google Scholar 

  83. Vermeire S, O’Byrne S, Keir M, Williams M, Lu TT, Mansfield JC, Lamb CA, Feagan BG, Panes J, Salas A, Baumgart DC, Schreiber S, Dotan I, Sandborn WJ, Tew GW, Luca D, Tang MT, Diehl L, Eastham-Anderson J, De Hertogh G, Perrier C, Egen JG, Kirby JA, van Assche G, Rutgeerts P (2014) Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet 384(9940):309–318. https://doi.org/10.1016/S0140-6736(14)60661-9

    Article  CAS  PubMed  Google Scholar 

  84. Martin DA, Churchill M, Flores-Suarez L, Cardiel MH, Wallace D, Martin R, Phillips K, Kaine JL, Dong H, Salinger D, Stevens E, Russell CB, Chung JB (2013) A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis. Arthritis Res Ther 15(5):R164. https://doi.org/10.1186/ar4347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vey N, Bourhis JH, Boissel N, Bordessoule D, Prebet T, Charbonnier A, Etienne A, Andre P, Romagne F, Benson D, Dombret H, Olive D (2012) A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120(22):4317–4323. https://doi.org/10.1182/blood-2012-06-437558

    Article  CAS  PubMed  Google Scholar 

  86. Reilly M, Miller RM, Thomson MH, Patris V, Ryle P, McLoughlin L, Mutch P, Gilboy P, Miller C, Broekema M, Keogh B, McCormack W, van de Wetering de Rooij J (2013) Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody. Clin Pharmacol Ther 94(5):593–600. https://doi.org/10.1038/clpt.2013.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wei X, Gibiansky L, Wang Y, Fuh F, Erickson R, O’Byrne S, Tang MT (2017) Pharmacokinetic and pharmacodynamic modeling of serum etrolizumab and circulating beta7 receptor occupancy in patients with ulcerative colitis. J Clin Pharmacol. https://doi.org/10.1002/jcph.1031

  88. Wyant T, Estevam J, Yang L, Rosario M (2016) Development and validation of receptor occupancy pharmacodynamic assays used in the clinical development of the monoclonal antibody vedolizumab. Cytometry B Clin Cytom 90(2):168–176. https://doi.org/10.1002/cyto.b.21236

    Article  CAS  PubMed  Google Scholar 

  89. Sternebring O, Alifrangis L, Christensen TF, Ji H, Hegelund AC, Hogerkorp CM (2016) A weighted method for estimation of receptor occupancy for pharmacodynamic measurements in drug development. Cytometry B Clin Cytom 90(2):220–229. https://doi.org/10.1002/cyto.b.21277

    Article  PubMed  Google Scholar 

  90. Liang M, Schwickart M, Schneider AK, Vainshtein I, Del Nagro C, Standifer N, Roskos LK (2016) Receptor occupancy assessment by flow cytometry as a pharmacodynamic biomarker in biopharmaceutical development. Cytometry B Clin Cytom 90(2):117–127. https://doi.org/10.1002/cyto.b.21259

    Article  PubMed  Google Scholar 

  91. Goins CL, Chappell CP, Shashidharamurthy R, Selvaraj P, Jacob J (2010) Immune complex-mediated enhancement of secondary antibody responses. J Immunol 184(11):6293–6298. https://doi.org/10.4049/jimmunol.0902530

    Article  CAS  PubMed  Google Scholar 

  92. Bartelds GM, Krieckaert CL, Nurmohamed MT, van Schouwenburg PA, Lems WF, Twisk JW, Dijkmans BA, Aarden L, Wolbink GJ (2011) Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 305(14):1460–1468. https://doi.org/10.1001/jama.2011.406

    Article  CAS  PubMed  Google Scholar 

  93. C. M (2014) The relevance of immunogenicity in preclinical development. J Bioanal Biomed 6:1):1–1):4

    Google Scholar 

  94. De Groot AS, McMurry J, Moise L (2008) Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 8(5):620–626. https://doi.org/10.1016/j.coph.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  95. Krishna M, Nadler SG (2016) Immunogenicity to biotherapeutics – the role of anti-drug immune complexes. Front Immunol 7:21. https://doi.org/10.3389/fimmu.2016.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh SK (2011) Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci 100(2):354–387. https://doi.org/10.1002/jps.22276

    Article  CAS  PubMed  Google Scholar 

  97. Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36(1):3–10. https://doi.org/10.1016/j.ymeth.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  98. 1 ECBR (18 May 2017) Guideline on Immunogenicity assessment of therapeutic proteins. https://www.ema.europa.eu

  99. FaDA (FDA) (Jan 2019) Immunogenicity testing of therapeutic protein products – developing and validating assays for anti-drug antibody detection. https://www.fda.gov

  100. Shankar G, Arkin S, Cocea L, Devanarayan V, Kirshner S, Kromminga A, Quarmby V, Richards S, Schneider CK, Subramanyam M, Swanson S, Verthelyi D, Yim S, American Association of Pharmaceutical S (2014) Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations. AAPS J 16(4):658–673. https://doi.org/10.1208/s12248-014-9599-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wadhwa M, Knezevic I, Kang HN, Thorpe R (2015) Immunogenicity assessment of biotherapeutic products: an overview of assays and their utility. Biologicals 43(5):298–306. https://doi.org/10.1016/j.biologicals.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  102. (2005) ICH S8: immunotoxicity studies for human pharmaceuticals. http://www.ich.org

  103. Peachee VL, Smith MJ, Beck MJ, Stump DG, White KL Jr (2014) Characterization of the T-dependent antibody response (TDAR) to keyhole limpet hemocyanin (KLH) in the Gottingen minipig. J Immunotoxicol 11(4):376–382. https://doi.org/10.3109/1547691X.2013.853716

    Article  CAS  PubMed  Google Scholar 

  104. Plitnick LM, Herzyk DJ (2010) The T-dependent antibody response to keyhole limpet hemocyanin in rodents. Methods Mol Biol 598:159–171. https://doi.org/10.1007/978-1-60761-401-2_11

    Article  CAS  PubMed  Google Scholar 

  105. Brennan FR, Morton LD, Spindeldreher S, Kiessling A, Allenspach R, Hey A, Muller PY, Frings W, Sims J (2010) Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. MAbs 2(3):233–255

    Article  PubMed  PubMed Central  Google Scholar 

  106. Galbiati V, Mitjans M, Corsini E (2010) Present and future of in vitro immunotoxicology in drug development. J Immunotoxicol 7(4):255–267. https://doi.org/10.3109/1547691X.2010.509848

    Article  CAS  PubMed  Google Scholar 

  107. Herzyk DJ, Haggerty HG (2018) Cancer immunotherapy: factors important for the evaluation of safety in nonclinical studies. AAPS J 20(2):28. https://doi.org/10.1208/s12248-017-0184-3

    Article  CAS  PubMed  Google Scholar 

  108. Lebrec H, Molinier B, Boverhof D, Collinge M, Freebern W, Henson K, Mytych DT, Ochs HD, Wange R, Yang Y, Zhou L, Arrington J, Christin-Piche MS, Shenton J (2014) The T-cell-dependent antibody response assay in nonclinical studies of pharmaceuticals and chemicals: study design, data analysis, interpretation. Regul Toxicol Pharmacol 69(1):7–21. https://doi.org/10.1016/j.yrtph.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  109. Koup RA, Douek DC (2011) Vaccine design for CD8 T lymphocyte responses. Cold Spring Harb Perspect Med 1(1):a007252. https://doi.org/10.1101/cshperspect.a007252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Park H, Adamson L, Ha T, Mullen K, Hagen SI, Nogueron A, Sylwester AW, Axthelm MK, Legasse A, Piatak M Jr, Lifson JD, McElrath JM, Picker LJ, Seder RA (2013) Polyinosinic-polycytidylic acid is the most effective TLR adjuvant for SIV Gag protein-induced T cell responses in nonhuman primates. J Immunol 190(8):4103–4115. https://doi.org/10.4049/jimmunol.1202958

    Article  CAS  PubMed  Google Scholar 

  111. Loffredo J, Vuyyuru R, Spires V, Beyer S, Fox M, Ehrmann J, Taylor K, Engelhardt J, Korman A, Graziano R (2017) Non-fucosylated anti-CTLA-4 antibody enhances vaccine-induced t cell responses in a non-human primate pharmacodynamic vaccine model. J Immunother Cancer 5(2):P55

    Google Scholar 

  112. Leong ML, Newell EW (2015) Multiplexed peptide-MHC tetramer staining with mass cytometry. Methods Mol Biol 1346:115–131. https://doi.org/10.1007/978-1-4939-2987-0_9

    Article  CAS  PubMed  Google Scholar 

  113. Sims S, Willberg C, Klenerman P (2010) MHC-peptide tetramers for the analysis of antigen-specific T cells. Expert Rev Vaccines 9(7):765–774. https://doi.org/10.1586/erv.10.66

    Article  CAS  PubMed  Google Scholar 

  114. Pareja E, Tobes R, Martin J, Nieto A (1997) The tetramer model: a new view of class II MHC molecules in antigenic presentation to T cells. Tissue Antigens 50(5):421–428

    Article  CAS  PubMed  Google Scholar 

  115. Rodenko B, Toebes M, Hadrup SR, van Esch WJ, Molenaar AM, Schumacher TN, Ovaa H (2006) Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc 1(3):1120–1132. https://doi.org/10.1038/nprot.2006.121

    Article  CAS  PubMed  Google Scholar 

  116. Slota M, Lim JB, Dang Y, Disis ML (2011) ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines 10(3):299–306. https://doi.org/10.1586/erv.10.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Svitek N, Taracha EL, Saya R, Awino E, Nene V, Steinaa L (2016) Analysis of the cellular immune responses to vaccines. Methods Mol Biol 1349:247–262. https://doi.org/10.1007/978-1-4939-3008-1_16

    Article  CAS  PubMed  Google Scholar 

  118. Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, Coveler AL, Childs JS, Higgins DM, Fintak PA, dela Rosa C, Tietje K, Link J, Waisman J, Salazar LG (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27(28):4685–4692. https://doi.org/10.1200/JCO.2008.20.6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gulley JL, Arlen PM, Madan RA, Tsang KY, Pazdur MP, Skarupa L, Jones JL, Poole DJ, Higgins JP, Hodge JW, Cereda V, Vergati M, Steinberg SM, Halabi S, Jones E, Chen C, Parnes H, Wright JJ, Dahut WL, Schlom J (2010) Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 59(5):663–674. https://doi.org/10.1007/s00262-009-0782-8

    Article  CAS  PubMed  Google Scholar 

  120. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, Whiteside T, Butterfield LH, Weiner L (2009) Immunogenicity and antitumor effects of vaccination with peptide vaccine+/−granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin Cancer Res 15(4):1443–1451. https://doi.org/10.1158/1078-0432.CCR-08-1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gray CM, Mlotshwa M, Riou C, Mathebula T, de Assis Rosa D, Mashishi T, Seoighe C, Ngandu N, van Loggerenberg F, Morris L, Mlisana K, Williamson C, Karim SA, Team CAIS (2009) Human immunodeficiency virus-specific gamma interferon enzyme-linked immunospot assay responses targeting specific regions of the proteome during primary subtype C infection are poor predictors of the course of viremia and set point. J Virol 83(1):470–478. https://doi.org/10.1128/JVI.01678-08

    Article  CAS  PubMed  Google Scholar 

  122. Tario JD Jr, Muirhead KA, Pan D, Munson ME, Wallace PK (2011) Tracking immune cell proliferation and cytotoxic potential using flow cytometry. Methods Mol Biol 699:119–164. https://doi.org/10.1007/978-1-61737-950-5_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang X, Lebrec H (2017) Immunophenotyping: application to safety assessment. Toxicol Pathol 45(7):1004–1011. https://doi.org/10.1177/0192623317736742

    Article  PubMed  Google Scholar 

  124. Burchiel SW, Kerkvliet NL, Gerberick GF, Lawrence DA, Ladics GS (1997) Assessment of immunotoxicity by multiparameter flow cytometry. Fundam Appl Toxicol 38(1):38–54

    Article  CAS  PubMed  Google Scholar 

  125. Corsini E, House RV (2018) Evaluating cytokines in immunotoxicity testing. Methods Mol Biol 1803:297–314. https://doi.org/10.1007/978-1-4939-8549-4_18

    Article  CAS  PubMed  Google Scholar 

  126. Jackman JA, Meszaros T, Fulop T, Urbanics R, Szebeni J, Cho NJ (2016) Comparison of complement activation-related pseudoallergy in miniature and domestic pigs: foundation of a validatable immune toxicity model. Nanomedicine 12(4):933–943. https://doi.org/10.1016/j.nano.2015.12.377

    Article  CAS  PubMed  Google Scholar 

  127. Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216(2–3):106–121. https://doi.org/10.1016/j.tox.2005.07.023

    Article  CAS  PubMed  Google Scholar 

  128. Kawabata TT, Evans EW (2012) Development of immunotoxicity testing strategies for immunomodulatory drugs. Toxicol Pathol 40(2):288–293. https://doi.org/10.1177/0192623311430238

    Article  CAS  PubMed  Google Scholar 

  129. Hamczyk MR, Villa-Bellosta R, Andres V (2015) In vitro macrophage phagocytosis assay. Methods Mol Biol 1339:235–246. https://doi.org/10.1007/978-1-4939-2929-0_16

    Article  CAS  PubMed  Google Scholar 

  130. Lankveld DP, Van Loveren H, Baken KA, Vandebriel RJ (2010) In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 598:401–423. https://doi.org/10.1007/978-1-60761-401-2_26

    Article  CAS  PubMed  Google Scholar 

  131. Narayanan PK, Li N (2019) In vitro monocyte/macrophage phagocytosis assay for the prediction of drug-induced thrombocytopenia. Curr Protoc Toxicol 79(1):e68. https://doi.org/10.1002/cptx.68

    Article  CAS  PubMed  Google Scholar 

  132. Jang YY, Cho D, Kim SK, Shin DJ, Park MH, Lee JJ, Shin MG, Shin JH, Suh SP, Ryang DW (2012) An improved flow cytometry-based natural killer cytotoxicity assay involving calcein AM staining of effector cells. Ann Clin Lab Sci 42(1):42–49

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautham K. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, J., Mitra, M.S., Rao, G.K. (2020). In Vitro Assays for Assessing Potential Adverse Effects of Cancer Immunotherapeutics. In: Tan, SL. (eds) Immuno-Oncology. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0171-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0171-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0170-9

  • Online ISBN: 978-1-0716-0171-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics