Skip to main content

Case Study #6: Robotic Manipulator Control Design

  • Chapter
Book cover Nonlinear Power Flow Control Design

Part of the book series: Understanding Complex Systems ((UCS))

  • 2140 Accesses

Abstract

Chapter 11 presents the design of nonlinear controllers for a two-link robot based on Hamiltonian Surface Shaping and Power Flow Control (HSSPFC). HSSPFC is demonstrated to be an extension of controlled Lagrangians, energy-balancing, and energy-shaping by developing necessary and sufficient conditions for stability of a class of nonlinear systems, Hamiltonian natural systems, based on the recognition that the Hamiltonian is stored exergy. The nonlinear dynamic stability constraint is shown to be equivalent to the Melnikov number for heteroclinic orbits. HSSPFC is used to design nonlinear regulator and tracking controllers with defined stability boundaries including limit cycles. Also, the minimum energy state controller of energy-balancing is demonstrated to be a maximum entropy state controller based on HSSPFC. Numerical simulations are presented for the tracking controller design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for nonlinear control design. Int. J. Exergy 6(3), 357–387 (2009)

    Google Scholar 

  2. Junkins, J.L., Kim, Y.: Introduction to Dynamics and Control of Flexible Structures. AIAA, Washington (1993)

    MATH  Google Scholar 

  3. Robinett III, R.D., Wilson, D.G.: Exergy and entropy thermodynamic concepts for control system design: slewing single axis. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, August 2006

    Google Scholar 

  4. Robinett III, R.D., Wilson, D.G.: Hamiltonian surface shaping with information theory and exergy/entropy control for collective plume tracing. Int. J. Systems, Control and Communications 2(1/2/3) (2010)

    Google Scholar 

  5. Robinett III, R.D., Wilson, D.G.: What is a limit cycle? Int. J. Control 81(12), 1886–1900 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Robinett III, R.D., Wilson, D.G.: Collective plume tracing: a minimal information approach to collective control. Int. J. Robust Nonlinear Control (2009). doi:10.1002/rnc.1420

    MATH  Google Scholar 

  7. Lyapunov, A.M.: Stability of Motion. Academic Press, New York (1966)

    MATH  Google Scholar 

  8. Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for control design: nonlinear systems. In: 14th Mediterranean Conference on Control and Automation, Ancona, Italy, June 28–30, 2006

    Google Scholar 

  9. Robinett III, R.D., Wilson, D.G.: Exergy and entropy thermodynamic concepts for nonlinear control design. In: ASME 2006 International Mechanical Engineering Congress & Exposition, Chicago, IL, November 5–10, 2006

    Google Scholar 

  10. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  11. Alberto, L.F.C., Bretas, N.G.: Application of Melnikov’s method for computing heteroclinic orbits in a classical SMIB power system model. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(7), 1085–1089 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Winchester, J.: Grumman X-29, X-Planes and Prototypes. Amber Books, London (2005)

    Google Scholar 

  13. Taliaferro, S.D.: An inversion of the Lagrange–Dirichlet stability theorem. Arch. Ration. Mech. Anal. 73, 183–190 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hagedorn, P., Mawhin, J.: A simple variational approach to a converse of the Lagrange-Dirichlet theorem. Arch. Ration. Mech. Anal. 120, 327–335 (1992), Springer-Verlag

    Article  MathSciNet  MATH  Google Scholar 

  15. Willems, J.C.: Dissipative dynamical systems part I: General theory; part II: Linear systems with quadratic supply rates. Arch. Ration. Mech. Anal. 45, 321–393 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kokotovic, P., Arcak, M.: Constructive nonlinear control: a historical perspective. Preprint submitted to Elsevier, August 2000

    Google Scholar 

  17. Bloch, A.N., Chang, D.E., Leonard, N.E., Marsden, J.E.: Controlled Lagrangians and the stabilization of mechanical systems: potential shaping. IEEE Trans. Autom. Control 46(10), 1556–1571 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ortega, R., Garcia, E.: Energy-shaping stabilization of dynamical systems. Laboratoire des Signaux et Systemes, SUPELEC, Gif-sur-Yvette, France (2004)

    Google Scholar 

  19. Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. Journal of Dynamic Systems, Measurement, and Control 102(119) (1981)

    Google Scholar 

  20. Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for control system design: regulators. In: 2006 IEEE International Conference on Control Applications (CCA), Munich, Germany, October 2006, pp. 2249–2256 (2006)

    Chapter  Google Scholar 

  21. Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for control system design: robotic servo applications. In: 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, May 15–19, 2006, pp. 3685–3692 (2006)

    Google Scholar 

  22. Robinett III, R.D., Wilson, D.G.: Exergy and irreversible entropy production thermodynamic concepts for control system design: nonlinear regulator systems. In: The 8th IASTED International Conference on Control and Applications, Montreal, Quebec, Canada, May 24–26, 2006

    Google Scholar 

  23. Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators. IEEE Press, New York (1996)

    MATH  Google Scholar 

  24. Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Dover, New York (1969)

    Google Scholar 

  25. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Wilson .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Robinett, R.D., Wilson, D.G. (2011). Case Study #6: Robotic Manipulator Control Design. In: Nonlinear Power Flow Control Design. Understanding Complex Systems. Springer, London. https://doi.org/10.1007/978-0-85729-823-2_11

Download citation

Publish with us

Policies and ethics