Skip to main content

Exploitation Performance and Characterization of a Prototype Compressive Sensing Imaging Spectrometer

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 1

Abstract

The coded aperture snapshot spectral imager (CASSI) systems are a class of imaging spectrometers that provide a first-generation implementation of compressive sensing themes to the domain of hyperspectral imaging. Via multiplexing of information from different spectral bands originating from different spatial locations, a CASSI system undersamples the three-dimensional spatial/spectral data cube of a scene. Reconstruction methods are then used to recover an estimate of the full data cube. Here we report on our characterization of a CASSI system’s performance in terms of post-reconstruction image quality and the suitability of using the resulting data cubes for typical hyperspectral data exploitation tasks (e.g., material detection, pixel classification). The data acquisition and reconstruction process does indeed introduce trade-offs in terms of achieved image quality and the introduction of spurious spectral correlations versus data acquisition speedup and the potential for reduced data volume. The reconstructed data cubes are of sufficient quality to perform reasonably accurate pixel classification. Potential avenues to improve upon the usefulness of CASSI systems for hyperspectral data acquisition and exploitation are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arguello, H., Gonzalo, A.: Code aperture design for compressive spectral imaging. In: 18th European Signal Processing Conference, Aalbork, Denmark (2010)

    Google Scholar 

  2. Baraniuk, R.: Compressive sensing [Lecture Notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Google Scholar 

  3. Bioucas-Dias, J., Figueiredo, M.: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    Google Scholar 

  4. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theor. 52(2), 489–509 (2006)

    Google Scholar 

  5. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Google Scholar 

  6. Castrodad, A., Xing, Z., Greer, J., Bosch, E., Carin, L., Sapiro, G.: Discriminative sparse representations in hyperspectral imagery. In: 2010 IEEE International Conference on Image Processing, pp. 1313–1316. IEEE (2010)

    Google Scholar 

  7. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306 (2006)

    Google Scholar 

  8. Kruse, F., Lefkoff, A., Boardman, J., Heidebrecht, K., Shapiro, A., Barloon, P., Goetz, A.: The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44(2–3), 145–163 (1993)

    Google Scholar 

  9. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Google Scholar 

  10. Gehm, M.E., John, R., Brady, D.J., Willett, R.M., Schulz, T.J.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14,013 (2007)

    Google Scholar 

  11. Kraut, S., Scharf, L., Butler, R.: The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic. IEEE Trans. Signal Process. 53(2), 427–438 (2005)

    Google Scholar 

  12. Krishnamurthy, K., Raginsky, M., Willett, R.: Hyperspectral target detection from incoherent projections. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3550–3553. IEEE (2010)

    Google Scholar 

  13. Manolakis, D., Marden, D., Shaw, G.A.: Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14(1), 79–116 (2003)

    Google Scholar 

  14. Nunez, J., Fors, O., Otazu, X., Pala, V., Arbiol, R., Merino, M.: A wavelet-based method for the determination of the relative resolution between remotely sensed images. IEEE Trans. Geosci. Remote Sens. 44(9), 2539–2548 (2006)

    Google Scholar 

  15. Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V., Arbiol, R.: Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 37(3), 1204–1211 (1999)

    Google Scholar 

  16. Rand, R.S.: A neural network approach for improved detector performance of spectral matched filters in hyperspectral imagery. In: Proceedings of SPIE 7457, 74,570T–74,570T–11 (2009)

    Google Scholar 

  17. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Google Scholar 

  18. Veeraraghavan, A., Reddy, D., Raskar, R.: Coded strobing photography: compressive sensing of high speed periodic videos. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 671–86 (2011)

    Google Scholar 

  19. Wagadarikar, A.: Compressive spectral and coherence imaging. Ph.D. thesis, Duke University (2009)

    Google Scholar 

  20. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10), B44 (2008)

    Google Scholar 

  21. Wakin, M., Laska, J., Duarte, M., Baron, D., Sarvotham, S., Takhar, D., Kelly, K., Baraniuk, R.: An Architecture for Compressive Imaging. In: 2006 International Conference on Image Processing, pp. 1273–1276. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Deloye, C.J., Flake, J.C., Kittle, D., Bosch, E.H., Rand, R.S., Brady, D.J. (2013). Exploitation Performance and Characterization of a Prototype Compressive Sensing Imaging Spectrometer. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8376-4_8

Download citation

Publish with us

Policies and ethics