Skip to main content

Tangent Halfspaces to Sets of Finite Perimeter in Carnot Groups

  • Chapter
  • First Online:
Advances in Phase Space Analysis of Partial Differential Equations

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 78))

Summary

We consider sets of locally finite perimeter in Carnot groups. We show that if E is a set of locally finite perimeter in a Carnot group G then, for almost every x ∈ G with respect to the perimeter measure of E, some tangent of E at x is a vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra Cassano in step 2 Carnot groups.

2000 AMS Subject Classification: 53C17, 49Q15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math., 159 (2001), 51–67.

    Article  MATH  MathSciNet  Google Scholar 

  2. L.Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces, Set Valued Anal., 10 (2002), 111–128.

    Article  MATH  MathSciNet  Google Scholar 

  3. L.Ambrosio, N.Fusco & D.Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Oxford (2000).

    MATH  Google Scholar 

  4. L.Ambrosio & P. Tilli. Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and Its Applications, 25 (2004), Oxford University Press, London.

    Google Scholar 

  5. L.Ambrosio, B.Kleiner & E.Le Donne, Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane, Preprint, 2008.

    Google Scholar 

  6. A.Bellaïche, The tangent space in subriemannian geometry, in Subriemannian Geometry, Progress in Mathematics, 144, ed. by A.Bellaiche and J.Risler, Birkhäuser Verlag, Basel (1996).

    Google Scholar 

  7. L.Capogna, D.Danielli & N.Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom., 12 (1994), 203–215.

    MathSciNet  Google Scholar 

  8. J.Cheeger & B.Kleiner, On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces, Preprint, 2007.

    Google Scholar 

  9. J.Cheeger & B.Kleiner, Differentiating maps into L 1, and the geometry of BV functions, Preprint, 2007.

    Google Scholar 

  10. D.R. Cole & S. Pauls, C 1,1 Hypersurfaces of the Heisenberg group are N-rectifiable, Preprint, 2004.

    Google Scholar 

  11. D.Danielli, N.Garofalo & D.M.Nhieu, Traces inequalities for Carnot– Carathèodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 195–252.

    MATH  MathSciNet  Google Scholar 

  12. G.David & S.Semmes, Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure, Oxford University Press, London (1997).

    MATH  Google Scholar 

  13. E.De Giorgi, Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. (4), 36 (1954), 191–213.

    MATH  MathSciNet  Google Scholar 

  14. E.De Giorgi, Nuovi teoremi relativi alle misure (r - 1)-dimensionali in uno spazio ad r dimensioni, Ricerche Mat., 4 (1955), 95–113.

    MATH  MathSciNet  Google Scholar 

  15. M. Deza & M. Laurent, Geometry of cuts and metrics, Algorithms and Combinatorics, 15, 1997.

    Google Scholar 

  16. H.Federer, Geometric Measure Theory, Springer, Berlin, 1969.

    MATH  Google Scholar 

  17. C.Fefferman & D.H.Phong, Subelliptic eigenvalue problems. Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), 590–606, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983.

    Google Scholar 

  18. G.B.Folland & E.M.Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, NJ (1982).

    MATH  Google Scholar 

  19. B.Franchi, R.Serapioni & F.Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001), 479–531.

    Article  MATH  MathSciNet  Google Scholar 

  20. B.Franchi, R.Serapioni & F.Serra Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., 13 (2003), 421–466.

    MATH  MathSciNet  Google Scholar 

  21. D.H.Fremlin, Spaces of finite length, Proc. London Math. Soc. (3), 64 (1992), 449–486.

    Article  MATH  MathSciNet  Google Scholar 

  22. N.Garofalo & D.M.Nhieu, Isoperimetric and Sobolev inequalities for Carnot- Carathéodory spaces and the existence of minimal surfaces, Commun. Pure Appl. Math., 49 (1996), 1081–1144.

    Article  MATH  MathSciNet  Google Scholar 

  23. M.Gromov, Carnot-Carathéodory spaces seen from within, in Subriemannian Geometry, Progress in Mathematics, 144, ed. by A.Bellaiche and J.Risler, Birkhäuser Verlag, Basel (1996).

    Google Scholar 

  24. P.Hajlasz & P.Koskela, Sobolev met Poincaré, Memoirs AMS, 145 (2000).

    Google Scholar 

  25. S.Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society (2001).

    Google Scholar 

  26. L.Hormander, Hypoelliptic second-order differential equations, Acta Math., 121 (1968), 147–171.

    Article  MathSciNet  Google Scholar 

  27. B.Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. AMS, 121 (1994), 113–123.

    Article  MATH  MathSciNet  Google Scholar 

  28. B.Kirchheim & F.Serra Cassano, Rectifiability and parametrization of intrinsic regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 3 (2004), 871–896.

    MATH  MathSciNet  Google Scholar 

  29. A.Korányi & H.M.Reimann, Foundation for the Theory of Quasiconformal Mappings on the Heisenberg Group, Adv. Math., 111 (1995), 1–87.

    Article  MATH  MathSciNet  Google Scholar 

  30. A.W.Knapp, Lie groups beyond an introduction, Prog. Math., 140, Birkhäuser, Boston (2002).

    Google Scholar 

  31. V.Magnani, Elements of Geometric Measure Theory on Sub-Riemannian Groups, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa (2002).

    MATH  Google Scholar 

  32. P.Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge (1995).

    Book  MATH  Google Scholar 

  33. M.Miranda, Functions of bounded variation on good metric measure spaces, J. Math. Pures Appl., 82 (2003), 975–1004.

    MATH  MathSciNet  Google Scholar 

  34. J.Mitchell, On Carnot-Carathèodory metrics, J. Differ. Geom., 21 (1985), 35–45.

    MATH  Google Scholar 

  35. R.Monti & F.Serra Cassano, Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13 (2001), 339–376.

    Article  MATH  MathSciNet  Google Scholar 

  36. A.Nagel, E.M.Stein & S.Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math., 155 (1985), 103–147.

    Article  MATH  MathSciNet  Google Scholar 

  37. P.Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R.Acad. Sci. Paris, 295, I (1982), 127–130.

    MATH  MathSciNet  Google Scholar 

  38. P.Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., 129 (1989), 1–60.

    Article  MathSciNet  Google Scholar 

  39. D.Preiss, Geometry of measures in R n: distributions, rectifiability and densities. Ann. Math., 125 (1987), 537–643.

    Article  MathSciNet  Google Scholar 

  40. D.Preiss & J.Tišer, On Besicovitch 1/2-problem, J. London Math. Soc., 45 (1992), 279–287.

    Article  MATH  MathSciNet  Google Scholar 

  41. E.M.Stein, Harmonic Analysis, Princeton University Press, Princeton, NJ (1993).

    MATH  Google Scholar 

  42. N.Th.Varopoulos, L.Saloff-Coste & T.Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston

About this chapter

Cite this chapter

Ambrosio, L. (2009). Tangent Halfspaces to Sets of Finite Perimeter in Carnot Groups. In: Bove, A., Del Santo, D., Murthy, M. (eds) Advances in Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol 78. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4861-9_1

Download citation

Publish with us

Policies and ethics