
Chapter 7 

Benchmarking Models 
 

 
 

7.1 Introduction 

 Gap analysis is often used as a fundamental method in performance 
evaluation and benchmarking. However, gap analysis only deals one 
measure at a time. It is rare that one single measure can suffice for the 
purpose of performance evaluation (Camp, 1995). As a result, some multi-
factor based gap analysis methods have been developed. e.g., Spider charts, 
AHP maturity index, and Z charts. Although gaps can be identified with 
respect to individual performance measures, it remains a challenging task to 
combine the multiple measures in the final stage. Therefore, benchmarking 
models that can deal with multiple performance measures and provide an 
integrated benchmarking measure are needed.  
 Benchmarking is a process of defining valid measures of performance 
comparison among peer DMUs, using them to determine the relative 
positions of the peer DMUs and, ultimately, establishing a standard of 
excellence. In that sense, DEA can be regarded as a benchmarking tool, 
because the frontier identified can be regarded as an empirical standard of 
excellence. 
 Once the frontier is established, we may compare a set of new DMUs to 
the frontier. However, when a new DMU outperforms the identified frontier, 
a new frontier is generated by DEA. As a result, we do not have the same 
benchmark (frontier) for other (new) DMUs. 
 In the current chapter, we present a number of DEA-based benchmarking 
models where each (new) DMU is evaluated against a set of given 
benchmarks (standards). 
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7.2 Variable-benchmark Model 

 Cook, Seiford and Zhu (2004) develop a set of variable-benchmark 
model. Let *E  represent the set of benchmarks or the best-practice identified 
by the DEA. Based upon the input-oriented CRS envelopment model, we 
have 
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where a new observation is represented by newDMU  with inputs new

ix  (i = 1, 
…, m) and outputs new

ry  (r = 1, …, s). The superscript of CRS indicates that 
the benchmark frontier composed by benchmark DMUs in set *E  exhibits 
CRS. 
 Model (7.1) measures the performance of newDMU  with respect to 
benchmark DMUs in set *E  when outputs are fixed at their current levels. 
Similarly, based upon the output-oriented CRS envelopment model, we can 
have a model that measures the performance of newDMU  in terms of outputs 
when inputs are fixed at their current levels. 
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Theorem 7.1 *CRSδ  = 1/ *CRSτ , where *CRSδ  is the optimal value to model 
(7.1) and *CRS

oτ  is the optimal value to model (7.2). 
 
[Proof]: Suppose *

jλ  (j ∈ *E ) is an optimal solution associated with *CRSδ  
in model (7.1). Now, let *CRSτ  = 1/ *CRSδ , and jλ′  = *

jλ *CRS
oδ . Then *CRSτ  and 

jλ′  are optimal in model (7.2). Thus, *CRSδ  = 1/ *CRSτ . ■ 
 
 Model (7.1) or (7.2) yields a benchmark for newDMU . The ith input and 
the rth output for the benchmark can be expressed as 
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 Note also that although the DMUs associated with set *E  are given, the 
resulting benchmark may be different for each new DMU under evaluation. 
Because for each new DMU under evaluation, (7.3) may represent a 
different combination of DMUs associated with set *E . Thus, models (7.1) 
and (7.2) represent a variable-benchmark scenario. 
 
Theorem 7.2 
(i) *CRSδ  < 1 or *CRSτ  > 1 indicates that the performance of new

oDMU  is 
dominated by the benchmark in (7.3). 
(ii) *CRSδ  = 1 or *CRSτ  = 1 indicates that newDMU  achieve the same 
performance level of the benchmark in (7.3). 
(iii) *CRSδ  > 1 or *CRSτ  < 1 indicates that input savings or output surpluses 
exist in new

oDMU  when compared to the benchmark in (7.3). 
 
[Proof]: (i) and (ii) are obvious results in terms of DEA efficiency concept. 
 Now, *CRSδ  > 1 indicates that newDMU  can increase its inputs to reach the 
benchmark. This in turn indicates that *CRSδ  - 1 measures the input saving 
achieved by newDMU . Similarly, *CRSτ  < 1 indicates that newDMU  can 
decrease its outputs to reach the benchmark. This in turn indicates that 1 - 

*CRSτ  measures the output surplus achieved by newDMU . ■ 

 

Figure 7.1. Variable-benchmark Model 
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 Figure 7.1 illustrates the three cases described in Theorem 7.2. ABC 
(A'B'C') represents the input (output) benchmark frontier. D, H and G (or D', 
H', and G') represent the new DMUs to be benchmarked against ABC (or 
A'B'C'). We have *CRS

Dδ  > 1 for DMU D ( *
'

CRS
Dτ  < 1 for DMU D') indicating 

that DMU D can increase its input values by *CRS
Dδ  while producing the same 

amount of outputs generated by the benchmark (DMU D' can decrease its 
output levels while using the same amount of input levels consumed by the 
benchmark). Thus, *CRS

Dδ  > 1 is a measure of input savings achieved by 
DMU D and *

'
CRS
Dτ  < 1 is a measure of output surpluses achieved by DMU 

D'. 
 For DMU G and DMU G', we have *CRS

Gδ  = 1 and *
'

CRS
Gτ  = 1 indicating 

that they achieve the same performance level of the benchmark and no input 
savings or output surpluses exist. For DMU H and DMU H', we have *CRS

Hδ  
< 1 and *

'
CRS
Hτ  > 1 indicating that inefficiency exists in the performance of 

these two DMUs. 
 Note that for example, in Figure 7.1, a convex combination of DMU A 
and DMU B is used as the benchmark for DMU D while a convex 
combination of DMU B and DMU C is used as the benchmark for DMU G. 
Thus, models (7.1) and (7.2) are called variable-benchmark models. 
 From Theorem 7.2, we can define *CRSδ  - 1 or 1 - *CRSτ  as the 
performance gap between newDMU  and the benchmark. Based upon *CRSδ  
or *CRSτ , a ranking of the benchmarking performance can be obtained. 
 It is likely that scale inefficiency may be allowed in the benchmarking. 
We therefore modify models (7.1) and (7.2) to incorporate scale inefficiency 
by assuming VRS. 
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  Similar to Theorem 7.2, we have 
 
Theorem 7.3 
(i) *VRSδ  < 1 or *VRSτ  > 1 indicates that the performance of newDMU  is 
dominated by the benchmark in (7.3). 
(ii) *VRSδ  = 1 or *VRSτ  = 1 indicates that newDMU  achieve the same 
performance level of the benchmark in (7.3). 
(iii) *VRSδ  > 1 or *VRSτ  < 1 indicates that input savings or output surpluses 
exist in newDMU  when compared to the benchmark in (7.3). 
 
 Note that model (7.2) is always feasible, and model (7.1) is infeasible 
only if certain patterns of zero data are present (Zhu 1996b). Thus, if we 
assume that all the data are positive, (7.1) is always feasible. However, 
unlike models (7.1) and (7.2), models (7.4) and (7.5) may be infeasible. 
 
Theorem 7.4 
(i) If model (7.4) is infeasible, then the output vector of newDMU  dominates 
the output vector of the benchmark in (7.3). 
(ii) If model (7.5) is infeasible, then the input vector of newDMU  dominates 
the input vector of the benchmark in (7.3). 
 
[Proof]: The proof follows directly from the necessary and sufficient 
conditions for infeasibility in super-efficiency DEA model provided in 
Seiford and Zhu (1999). ■ 
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Figure 7.2. Infeasibility of VRS Variable-benchmark Model 

 The implication of the infeasibility associated with models (7.4) and (7.5) 
needs to be carefully examined. Consider Figure 7.2 where ABC represents 
the benchmark frontier. Models (7.4) and (7.5) yield finite optimal values for 
any newDMU  located below EC and to the right of EA. Model (7.4) is 
infeasible for newDMU  located above ray E''C and model (7.5) is infeasible 
for newDMU  located to the left of ray E'E. 
 Both models (7.4) and (7.5) are infeasible for newDMU  located above E''E 
and to the left of ray EF. Note that if newDMU  is located above E''C, its 
output value is greater than the output value of any convex combinations of 
A, B and C. 
 Note also that if newDMU  is located to the left of E'F, its input value is 
less than the input value of any convex combinations of A, B and C. 
 Based upon Theorem 7.4 and Figure 7.2, we have four cases: 
 
Case I: When both models (7.4) and (7.5) are infeasible, this indicates that 

newDMU  has the smallest input level and the largest output level 
compared to the benchmark. Thus, both input savings and output 
surpluses exist in newDMU . 
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Case II: When model (7.4) is infeasible and model (7.5) is feasible, the 

infeasibility of model (7.4) is caused by the fact that newDMU  has 
the largest output level compared to the benchmark. Thus, we use 
model (7.5) to characterize the output surpluses. 

 
Case III: When model (7.5) is infeasible and model (7.4) is feasible, the 

infeasibility of model (7.5) is caused by the fact that newDMU  has 
the smallest input level compared to the benchmark. Thus, we use 
model (7.4) to characterize the input savings. 

 
Case IV: When both models (7.4) and (7.5) are feasible, we use both of them 

to determine whether input savings and output surpluses exist. 
 
 If we change the constraint ∑ jλ =1 to ∑ jλ  < 1 and ∑ jλ  > 1, then we 
obtain the NIRS and NDRS variable-benchmark models, respectively. 
Infeasibility may be associated with these two types of RTS frontiers, and 
we should apply the four cases discussed above. Table 7.1 summarizes the 
variable-benchmark models. 
 We next use 22 internet companies to illustrate the variable-benchmark 
models. Table 7.2 presents the data. We have four inputs: (1) number of 
website visitors (thousand), (2) number of employees (person), (3) marketing 
expenditure ($ million), and (4) development expenditure ($ million), and 
two outputs: (1) number of customers, and (2) revenue ($ million). 

Table 7.1. Variable-benchmark Models 
Frontier Type Input-Oriented Output-Oriented 
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VRS Add ∑ jλ  = 1 
NIRS Add ∑ jλ  < 1 
NDRS Add ∑ jλ  > 1 
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 Table 7.2. Data for the Internet Companies 
Company 
 

Visitors 
 

Employee 
 

Marketing 
 

Develop- 
ment 

Customers 
 

Revenue 
 

Barnes&Noble 64812 1237 111.55 21.01 4700000 202.57 
Amazon.com 177744 7600 413.2 159.7 16900000 1640 
CDnow 79848 502 89.73 23.42 3260000 147.19 
eBay 168384 300 95.96 23.79 10010000 224.7 
1-800-Flowers 11940 2100 92.15 8.07 7800000 52.89 
Buy.com 27372 255 71.3 7.84 1950000 596.9 
FTD.com 11856 75 29.93 5.29 1800000 62.6 
Autobytel.com 12000 225 44.18 14.26 2065000 40.3 
Beyond.com 17076 250 81.35 10.39 2000000 117.28 
eToys 13896 940 120.46 43.43 1900000 151.04 
E*Trade 29532 2400 301.7 78.5 1551000 621.4 
Garden.com 16344 290 16 4.8 1070000 8.2 
Drugstore.com 19092 408 61.5 14.9 695000 34.8 
Outpost.com 7716 164 41.67 7 627000 188.6 
iPrint 42132 225 8.13 3.54 380000 3.26 
Furniture.com 10668 213 33.949 6.685 260000 10.904 
PlanetRX.com 17124 390 55.18 12.95 254000 8.99 
NextCard 46836 365 24.65 22.05 220000 26.56 
PetsMart.com 18564 72 33.47 2.43 180000 10.45 
Peapod 2076 1020 7.17 3.54 111900 73.13 
Webvan 1680 1000 11.75 15.24 47000 13.31 
CarsDirect.com 15612 702 33.43 2.14 12885 98.56 
 
 Suppose we select the first seven companies (Barnes & Noble, 
Amazon.com, CDnow, eBay, 1-800-Flowers, Buy.com, and FTD.com) as 
the benchmarks. If we apply the output-oriented CRS envelopment model to 
the seven companies, the top three companies (Barnes & Noble, 
Amazon.com, and CDnow) are not on the best-practice frontier, and 
therefore can be excluded. However, if we include them in the benchmark 
set, the benchmarking results will not be affected. Because *

jλ  related to the 
three companies must be equal to zero. 
 The spreadsheet model of the variable-benchmark models is very similar 
to the context-dependent DEA spreadsheet model. In fact, the evaluation 
background now is the selected benchmarks. Figure 7.3 shows the 
spreadsheet model for the output-oriented CRS variable-benchmark model 
where the benchmarks (evaluation background) are entered in rows 2-8. 
 Cell F2 is reserved to indicate the DMU under benchmarking. Cell F4 is 
the target cell which represent the CRS

oτ  in model (7.2). Cells I2:I8 represent 
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the jλ  for the benchmarks. Cell B9 contains the formula “=SUMPRODUCT 
(B2:B8,$I$2:$I$8)”. This formula is then copied into cells C9:E9. Cell G9 
contains the formula “=SUMPRODUCT(G2:G8,$I$2:$I$8)”. This formula 
is then copied into cell H9. 

 

Figure 7.3. Output-oriented CRS Variable-benchmark Spreadsheet Model 

 Cells B11:E11, and Cells G11:H11 contain the formulas for the DMU 
under benchmarking – the right-hand-side of model (7.2). The formula for 
B11 is “=INDEX(B12:B26,$F$2,1)”, and is copied into cells C11:E11. The 
formula for cell G11 is “=$F$4*INDEX(G12:G26,$F$2,1)”, and is copied 
into cell H11. 
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Figure 7.4. Solver Parameters for Output-oriented CRS Variable-benchmark Model 

 Figure 7.4 shows the Solver parameters for the spreadsheet model shown 
in Figure 7.3. A VBA procedure “VariableBenchmark” is used to record the 
benchmarking scores into cells I12:I26. 
 
Sub VariableBenchmark() 

Dim i As Integer 

For i = 1 To 15 

Range("F2") = i 

SolverSolve UserFinish:=True 

Range("I" & i + 11) = Range("F4") 

Next 

End Sub 
 

 Because the model in Figure 7.3 is an output-oriented model, a smaller 
score ( *CRSτ ) indicates a better performance. Thus, Peapod is the best 
company with respective to the specified benchmarks. The non-zero optimal 

*
jλ  indicates the actual benchmark for a company under benchmarking. For 

example, Buy.com is used as the actual benchmark for CarsDirect.com (see 
cell I7 in Figure 7.3). 
 If we use the input-oriented CRS variable-benchmark model, we need 
change the formula for cell B11 in Figure 7.3 to “=$F$4*INDEX 
(B12:B26,$F$2,1)”. This formula is then copied into cells C11:E11. The 
formula for cell G11 is changed to “=INDEX(G12:G26,$F$2,1)” and is 
copied into cell H11. All the other formulas in Figure 7.3 remain unchanged. 
 We also need to change the Solver parameters shown in Figure 7.4 by 
selecting “Min”, as shown in Figure 7.5. Figure 7.6 shows the spreadsheet 
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model for the input-oriented CRS variable-benchmark model and the 
benchmarking scores. It can be seen that Theorem 7.1 is true. 

 

Figure 7.5. Solver Parameters for Input-oriented CRS Variable-benchmark Model 

 

Figure 7.6. Input-oriented CRS Variable-benchmark Spreadsheet Model 

 We now consider the input-oriented VRS variable-benchmark model. We 
need to add a cell representing ∑ jλ  in the spreadsheet shown in Figure 7.6. 
We select cell I9, and enter the formula “=SUM(I2:I8)”. We also need to add 
an additional constraint on ∑ jλ  = 1 in the Solver parameters shown in 
Figure 7.5. This constraint is “$I$9 = 1”, as shown in Figure 7.7. 
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Figure 7.7. Solver Parameters for Input-oriented VRS Variable-benchmark Model 

 

Figure 7.8. Input-oriented VRS Variable-benchmark Spreadsheet Model 

 Figure 7.8 shows the spreadsheet for the input-oriented VRS variable-
benchmark model and the benchmarking scores in cells I12:I26. The button 
“VRS Variable Benchmark” is linked to the VBA procedure 
“VRSVariableBenchmark”. 
 
Sub VRSVariableBenchmark() 

Dim i As Integer 

For i = 1 To 15 
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Range("F2") = i 

SolverSolve UserFinish:=True 

If SolverSolve(UserFinish:=True) = 5 Then 

Range("I" & i + 11) = "Infeasible" 

Else 

Range("I" & i + 11) = Range("F4") 

End If 

Next 

End Sub 
 

 Because of the VRS frontier, the model may be infeasible. The 
SolverSolve function returns an integer value that indicates Solver’s 
“success”. If this value is 5, it means that there are no feasible solutions. This 
is represented by the statement “SolverSolve(UserFinish:=True) = 5”. In the 
procedure, if the Solver returns a value of 5, then the procedure records 
“infeasible”. Otherwise, the procedure records the optimal value in cell F4 of 
Figure 7.8. 

7.3 Fixed-benchmark Model 

 Although the benchmark frontier is given in the variable-benchmark 
models, a newDMU  under benchmarking has the freedom to choose a subset 
of benchmarks so that the performance of newDMU  can be characterized in 
the most favorable light. Situations when the same benchmark should be 
fixed are likely to occur. For example, the management may indicate that 
DMUs A and B in Figure 7.1 should be used as the fixed benchmark. i.e., 
DMU C in Figure 7.1 may not be used in constructing the benchmark. 
 To couple with this situation, Cook, Seiford and Zhu (2004) turn to the 
multiplier models. For example, the input-oriented CRS multiplier model 
determines a set of referent best-practice DMUs represented by a set of 
binding constraints in optimality. Let set B = { jDMU  : j ∈ BI } be the 
selected subset of benchmark set *E . i.e., BI  ⊂ *E . Based upon the input-
oriented CRS multiplier model, we have 
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 By applying equalities in the constraints associated with benchmark 
DMUs, model (7.6) measures newDMU ’s performance against the 
benchmark constructed by set B. At optimality, some DMUj j ∉ BI , may 
join the fixed-benchmark set if the associated constraints are binding. 
 Note that model (7.6) may be infeasible. For example, the DMUs in set B 
may not be fit into the same facet when they number greater than m+s-1, 
where m is the number of inputs and s is the number of outputs. In this case, 
we need to adjust the set B. 
 Three possible cases are associated with model (7.6). *~CRSσ  > 1 indicating 
that newDMU  outperforms the benchmark. *~CRSσ  = 1 indicating that 

newDMU  achieves the same performance level of the benchmark. *~CRSσ  < 1 
indicating that the benchmark outperforms newDMU . 
 By applying RTS frontier type and model orientation, we obtain the fixed-
benchmark models in Table 7.3 

Table 7.3. Fixed-benchmark Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 
 
 newDMU  is not included in the constraints of ∑ =

s
r rjr y1 μ  - ∑ =

m
i iji x1ν  + µ < 

0 ( BI∉j ) (∑ =
m
i iji x1ν  - ∑ =

s
r rjr y1 μ  + ν > 0 ( BI∉j )). However, other peer 

DMUs (( BI∉j ) are included. 
 Figure 7.9 shows the output-oriented CRS fixed-benchmark spreadsheet 
model where 1-800-Flowers and Buy.com are two fixed benchmarks. Cells 
B5:E5 and G5:H5 are reserved for input and output multipliers, respectively. 
They are the changing cells in the Solver parameters. 
 Cell C7 is the target cell and contains the formula “=SUMPRODUCT 
(B5:E5,INDEX(B10:E24,C6,0))”, where cell C6 indicates the DMU under 
evaluation – Autobytel.com. 
 Cell C8 contains the formula representing ∑ =

s
r

new
rr y1 μ  



Fixed-benchmark Model 145
 
Cell C8=SUMPRODUCT(G5:H5,INDEX (G10:H24,C6,0)) 
 
 The formula for cell I2 is “=SUMPRODUCT(B2:E2,$B$5:$E$5)-
SUMPRODUCT(G2:H2,$G$5:$H$5)”, and is copied into cells I3 and 
I10:I24. 

 

Figure 7.9. Output-oriented CRS Fixed-benchmark Spreadsheet Model 

 

Figure 7.10. Solver Parameters for Output-oriented CRS Fixed-benchmark Model 
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 Figure 7.10 shows the Solver parameters for Autobytel.com. Note that we 
have “$I$2:$I$3 = 0” for the two benchmarks. Note also that “$I$11:$I$24 
>=0” does not include the DMU under evaluation, Autobytel.com. 
 To solve the remaining DMUs, we need to set up different Solver 
parameters. Because the constraints change for each DMU under evaluation. 
For example, if we change the value of cell C6 to 15, i.e., we benchmark 
CarsDirect.com, we obtain a set of new Solver parameters by removing 
“$I$24>=0” from the Solver parameters shown in Figure 7.10 and then 
adding “$I$10>=0”, as shown in Figure 7.11. 
 Because different Solver parameters are used for different DMUs under 
benchmarking, a set of sophisticated VBA codes is required to automate the 
calculation. We here do not discuss it, and suggest using the “DEA Excel 
Solver” – a DEA Add-In for Microsoft Excel described in Chapter 12 to 
obtain the scores (see cells J10:J24 in Figure 7.11). 

 

Figure 7.11. Output-oriented CRS Fixed-benchmark Scores for Internet Companies 

7.4 Fixed-benchmark Model and Efficiency Ratio 

 A commonly used measure of efficiency is the ratio of output to input. For 
example, profit per employee measures the labor productivity. When 
multiple inputs and outputs are present, we may define the following 
efficiency ratio 
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where iv  and ru  represent the input and output weights, respectively. 
 DEA calculate the ratio efficiency without the information on the weights. 
In fact, the multiplier DEA models can be transformed into linear fractional 
programming problems. For example, if we define iν  = t iv  and rμ  = t ru , 
where t = 1/∑ ioi xν , the input-oriented CRS multiplier model can be 
transformed into 
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 The objective function in (7.7) represents the efficiency ratio of a DMU 
under evaluation. Because of the constraints in (7.7), the (maximum) 
efficiency cannot exceed one. Consequently, a DMU with an efficiency 
score of one is on the frontier. It can be seen that no additional information 
on the weights or tradeoffs are incorporated into the model (7.7). 
 If we apply the input-oriented CRS fixed-benchmark model to (7.7), we 
obtain 
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 It can be seen from (7.8) that the fixed benchmarks incorporate implicit 
tradeoff information into the efficiency evaluation. i.e., the constraints 
associated with BI  can be viewed as incorporation of tradeoffs or weight 
restrictions in DEA. Model (7.8) yields the (maximum ) efficiency under the 
implicit tradeoff information represented by the benchmarks. 
 As more DMUs are selected as fixed benchmarks, more complete 
information on the weights becomes available. For example, if we add 
FTD.com to the fixed-benchmark set, the benchmarking score for 
Autobytel.com becomes 1.1395, as shown in Figure 7.12. As expected, the 
performance of those internet companies becomes worse when the set of 
fixed benchmarks expands. 

 

Figure 7.12. Spreadsheet Model and Solver Parameters for Fixed-benchmark Model 

 Similarly, the output-oriented CRS fixed-benchmark model is equivalent 
to 
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 Note that we may define an ideal benchmark whose rth output ideal

ry  is the 
maximum output value across all DMUs, and ith input ideal

ix  the minimum 
input value across all DMUs. If we replace the fixed-benchmark set by the 
ideal benchmark, we have 
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 Because the ideal benchmark dominates all DMUs (unless DMUj is one of 
the ideal benchmark), the optimal value to (7.9) must not be greater than 
one. Further, ∑ rjr yu /∑ iji xv  < 1 are redundant,  and model (7.9) can be 
simplified as 
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 Model (7.10) is equivalent to the following linear programming problem 
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 Model (7.10) or (7.11) calculate the maximum efficiency of a specific 
DMU under evaluation given that the efficiency of the ideal benchmark is 
set equal to one. If we introduce RTS frontier type and model orientation 
into (7.10), we obtain other ideal-benchmark models, as shown in Table 7.4. 

Table 7.4. Ideal-benchmark Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 
 

7.5 Minimum Efficiency Model 

 Note that the fixed-benchmark models yield the maximum efficiency 
scores when the tradeoffs are implicitly defined by the benchmarks. If we 
change the objective function of model (7.8) into minimization, we have 
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 We refer to (7.12) as the input-oriented CRS minimum efficiency model. 
Although the benchmarks implicitly define the tradeoffs amongst inputs and 
outputs, the exact tradeoffs are still unavailable to us. Thus, the optimal 
value to (7.12) gives the lower efficiency bound for newDMU . The optimal 
value to (7.8) yields the upper efficiency bound. The true efficiency of 

newDMU  lies in-between the bounds. 
 In fact, model (7.12) describes the worst efficiency scenario whereas 
model (7.8) describe the best efficiency scenario. The minimum efficiency 
for the original input-oriented DEA models (e.g., model (7.7)) is zero, and 
for the original output-oriented DEA models is infinite. 
 Similarly, we can obtain the output-oriented CRS minimum efficiency 
model, 
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 Recall that a smaller score indicates a better performance in the output-
oriented DEA models. Therefore, the output-oriented CRS minimum 
efficiency score (optimal value to model (7.13) is greater than or equal to the 
efficiency score obtained from the output-oriented CRS fixed-benchmark 
model. 
 The linear program equivalents to (7.12) and (7.13) are presented in Table 
7.5 which summarizes the minimum efficiency models. 
 The spreadsheet models for the minimum efficiency models are similar to 
the fixed-benchmark spreadsheet models. We only need to change the 
“Max” to “Min” in the Solver parameters for the input-oriented models, and 
change the “Min” to “Max” for the output-oriented models. For example, 
consider the output-oriented CRS fixed-benchmark model shown in Figure 
7.9. Figure 7.13 shows the corresponding minimum efficiency spreadsheet 
model. 
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Table 7.5. Minimum Efficiency Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 

 

Figure 7.13. Output-oriented CRS Minimum Efficiency Spreadsheet Model 

 Under the tradeoffs characterized by the two benchmarks, the true 
efficiency of Autobytel.com lies in [0.6681, 5.9446]. Cells J10:J24 report the 
“minimum efficiency” for the 15 internet companies. The scores are 
calculated by the DEA Excel Solver discussed in Chapter 12. 
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 If we introduce the ideal benchmark into the minimum efficiency models, 
we obtain, for example, the input-oriented VRS ideal-benchmark minimum 
efficiency model 
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 Table 7.6 presents the ideal-benchmark minimum efficiency models. 

Table 7.6. Ideal-benchmark Minimum Efficiency Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 
 

7.6 Buyer-seller Efficiency Model 

 As pointed out by Wise and Morrison (2000), one of the major flaws in 
the current business-to-business (B2B) model is that it focuses on price-
driven transactions between buyers and sellers, and fails to recognize other 
important vendor attributes such as response time, quality and customization. 
In fact, a number of efficiency-based negotiation models have been 
developed to deal with multiple attributes – inputs and outputs. For example, 
DEA is used by Weber and Desai (1996) to develop models for vendor 
evaluation and negotiation. The fixed-benchmark models and the minimum 
efficiency models can better help the vendor in evaluating and selecting the 
vendors. 
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 Talluri (2002) proposes a buyer-seller game model that evaluates the 
efficiency of alternative bids with respect to the ideal target set by the buyer. 
Zhu (2004) shows that this buyer-seller game model is closely related to 
DEA and can be simplified as the models presented in Tables 7.4 and 7.6. 

We next use the data in Table 5.1 to demonstrate the use of DEA 
benchmarking models. A Fortune 500 pharmaceutical company was 
involved in the implementation of a Just-in-Time manufacturing system. 
Therefore, price, delivery performance, and quality were considered to be 
the three most important criteria in evaluating and selecting vendors. In 
Weber and Desai (1996), the price criterion is measured by the total 
purchase price based on a per unit contract delivered price, the delivery 
criterion is measured by the percentage of late deliveries, and the quality 
criterion is measured by the percentage of units rejected. Obviously, the 
measures for delivery and quality are bad outputs. Therefore, we re-define 
the delivery and quality by percentage on-time deliveries and percentage of 
accepted units, respectively. (Otherwise, we should use the method 
described in Chapter 5.) 

Table 7.7. Data for the Six Vendors 

Vendor Price ($/unit) % accepted units % on-time deliveries 
1 0.1958 98.8 95 
2 0.1881 99.2 93 
3 0.2204 100 100 
4 0.2081 97.9 100 
5 0.2118 97.7 97 
6 0.2096 98.8 96 

Table 7.8. Input-oriented CRS Efficiency and Efficient Target for Vendors 
Vendor Efficiency Price ($/units) % acceptance % on-time deliveries

1 0.981 0.192145 101.3333 95 
2 1 0.1881 99.2 93 
3 0.918 0.202258 106.6667 100 
4 0.972 0.202258 106.6667 100 
5 0.926 0.19619 103.4667 97 
6 0.926 0.194168 102.4 96 

The results are based upon the input-oriented CRS envelopment model. 
 
 Table 7.7 presents the data for six vendors that are obtained from the data 
presented in Table 5.1. The second column reports the input, and the third 
and forth columns report the two outputs. We next need to determine the 
frontier type. Because the outputs are measured in percentages, we assume 
the vendors form a VRS frontier. Otherwise, unreasonable results may be 
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obtained if we assume CRS frontier. For example, Table 7.8 reports the 
input-oriented CRS efficiency scores (second column) with the efficient 
targets. It can be seen that the efficient targets on percentage of accepted 
units are impossible to achieve. 
 If we use the input-oriented VRS envelopment model, vendors 2, 3, and 4 
are efficient, and can be selected. However, if we specify an ideal 
benchmark by the minimum input value and the maximum output values, as 
shown in Figure 7.14, we can further characterize the six vendors. 

 

Figure 7.14. Input-oriented VRS Ideal-benchmark Spreadsheet Model 

 Figure 7.14 shows the spreadsheet for the input-oriented VRS ideal-
benchmark model. Cell C4 and cells D4:E4 are reserved for the input and 
output multipliers. The free variable is represented by cell G3 which 
contains the formula “=F4-G4”. Cells F4:G4 are specified as changing cells 
in the Solver parameters (see Figure 7.15). 
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Figure 7.15. Solver Parameters for Input-oriented VRS Ideal-benchmark Model 

 Cell F2 contains the formula for the ideal benchmark, that is 
 
Cell F2=SUMPRODUCT(D2:E2,D4:E4)-B2*B4+G3 
 
 Cell C5 is reserved to indicate the vendor under evaluation. The 
(maximum) efficiency is presented in cell C6 which contains the formula 
 
Cell C6=SUMPRODUCT(D4:E4,INDEX(D9:E14,C5,0))+G3 
 
 Cell C7 is the weighted input and contains the formula 
 
Cell C7=B4*INDEX(B9:B14,C5,1) 
 
 The Solver parameters shown in Figure 7.15 remain the same for all the 
vendors, and the calculation is performed by the VBA procedure 
“IdealBenchmark”. 
 
Sub IdealBenchmark() 

Dim i As Integer 

For i = 1 To 6 

Range("C5") = i 

SolverSolve UserFinish:=True 

Range("F" & i + 8) = Range("C6") 

Next 

End Sub 

 
 Based upon the scores in cells F9:F14 in Figure 7.14, vendor 2 has the 
best performance. 
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Figure 7.16. Solver Parameters for VRS Ideal-benchmark Minimum Efficiency Model 

 Next, we turn to the ideal-benchmark minimum efficiency model (7.14). 
The spreadsheet is the same as the one shown in Figure 7.14. However, we 
need to change “Max” to “Min” in the Solver parameters shown in Figure 
7.15. Figure 7.16 shows the result. Figure 7.17 shows the minimum 
efficiency scores in cells F9:F14. The minimum efficiency model also 
indicates that vendor 2 is the best one. 

 

Figure 7.17. Minimum Efficiency Scores for the Six Vendors 
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7.7 Solving DEA Using DEAFrontier Software 

7.7.1 Variable-benchmark Models 

To run the variable-benchmark models presented in Table 7.1, we need 
set up the data sheets. Store the benchmarks in a sheet named “Benchmarks” 
and the DMUs under evaluation in a sheet named “DMUs”. The format for 
these two sheets is the same as that shown in Figure 12.3. Then select the 
Variable Benchmark Model menu item. You will be prompted a form for 
selecting the model orientation and the frontier type as shown in Figure 7.18. 
Note that if you select a frontier type other than CRS, the results may be 
infeasible. The benchmarking results are reported in the sheet 
“Benchmarking Results”. 

 

Figure 7.18. Variable Benchmark Models 

7.7.2 Fixed-benchmark Models 

To run the fixed-benchmark models presented in Table 7.3, we store the 
benchmarks in a sheet named “Benchmarks” and the DMUs under 
evaluation in a sheet named “DMUs”. Then select the Fixed-Benchmark 
Model menu item. You will be prompted a form for selecting the model 
orientation and the frontier type. The results are reported in the “Efficiency 
Report” sheet. If the benchmarks are not properly selected, you will have 
infeasible results and need to adjust the benchmarks. 

The Ideal-benchmark Models in Table 7.4 should be calculated using the 
Fixed-Benchmark Model menu item. The data for the ideal benchmark is 
stored in the “Benchmarks” sheet. 
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7.7.3 Minimum Efficiency Models 

To run the minimum efficiency models presented in Table 7.5, we store 
the benchmarks in a sheet named “Benchmarks” and the DMUs under 
evaluation in a sheet named “DMUs”. Then select the Minimum Efficiency 
Model menu item. You will be prompted a form for selecting the model 
orientation and the frontier type. The results are reported in the “Minimum 
Efficiency” sheet. 

 The Ideal-benchmark Minimum Efficiency Models in Table 7.6 should 
be calculated using the Minimum Efficiency menu item. The data for the 
ideal benchmark is stored in the “Benchmarks” sheet. 
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